Skip to main content

Cell-Penetrating Peptides Targeting Mitochondria

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria are key organelles with essential functions and fundamental roles in cell death and survival signaling. Consequently, they are involved in a wide range of diseases with a great diversity of clinical appearance, which makes them attractive as target for drugs to treat metabolic and degenerative diseases and cancer. Efficient methods for specific intracellular delivery of exogenous compounds, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles, would be beneficial for research and patients. A sustained effort in the last 20 years has been done to exploit cell-penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry. Here, we discuss the mechanisms by which CPPs can function, the use of this alternative as well as strategies used to target mitochondria and the implications for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andaloussi SE, Lehto T, Mäger I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutšenko J, Moreno PM, Oskolkov N, Hälldin J, Tedeba U, Metspalu A, Lebleu B, Lehtiö J, Smith CI, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39(9):3972–3987

    Article  PubMed  CAS  Google Scholar 

  • Arukuusk P, Pärnaste L, Oskolkov N, Copolovici DM, Margus H, Padari K, Möll K, Maslovskaja J, Tegova R, Kivi G, Tover A, Pooga M, Ustav M, Langel U (2013) New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochim Biophys Acta 1828(5):1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Balayssac S, Burlina F, Convert O, Bolbach G, Chassaing G, Lequin O (2006) Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: a interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry 45(5):1408–1420

    Article  CAS  PubMed  Google Scholar 

  • Birk AV et al (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 24(8):1250–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock R (2014) The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem 25:863–868

    Article  CAS  PubMed  Google Scholar 

  • Cai M et al (2015) Mitochondria-targeted antioxidant peptide SS31 protects cultured human lens epithelial cells against oxidative stress. Curr Eye Res 40(8):822–829

    Article  CAS  PubMed  Google Scholar 

  • Calkins MJ, Manczak M, Reddy PH (2012) Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel, Switzerland) 5(10):1103–1119

    Article  CAS  Google Scholar 

  • Cao M et al (2012) Mitochondria-targeted antioxidant attenuates high glucose-induced P38 MAPK pathway activation in human neuroblastoma cells. Mol Med Rep 5(4):929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter EA et al (2011) Evaluation of the antioxidant peptide SS31 for treatment of burn-induced insulin resistance. Int J Mol Med 28(4):589–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrato CP, Langel Ü (2017) Effect of a fusion peptide by covalent conjugation of a mitochondrial cell-penetrating peptide and a glutathione analog peptide. Mol Ther Methods Clin Dev 5:221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrato CP, Pirisinu M et al (2015a) Novel cell-penetrating peptide targeting mitochondria. FASEB J 29(11):4589–4599

    Article  CAS  PubMed  Google Scholar 

  • Cerrato CP, Veiman K-L, Langel Ü (2015b) Advances in peptide delivery. In: Kruger HG, Albericio F (eds) Advances in the discovery and development of peptide therapeutics. Future Science, Future Science Group, London, pp 160–171

    Chapter  Google Scholar 

  • Chee SM, Wongsantichon J, Soo Tng Q, Robinson R, Joseph TL, Verma C, Lane DP, Brown CJ, Ghadessy FJ (2014) Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2. PLoS One 9(8):e104914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho S et al (2007) A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem 282(7):4634–4642

    Article  CAS  PubMed  Google Scholar 

  • Cleal K et al (2013) Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles. Curr Pharm Des 19(16):2878–2894

    Article  CAS  PubMed  Google Scholar 

  • de Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, Cailler F (2005) Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem J 390(2):407–418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couvreur P et al (1979) Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 68(12):1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Covic L, Misra M, Badar J, Singh C, Kuliopulos A (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8(10):1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17:95–103

    Article  CAS  PubMed  Google Scholar 

  • Daniels DS, Schepartz A (2007) Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc 129(47):14578–14579

    Article  CAS  PubMed  Google Scholar 

  • Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, Bolbach G, Lavielle S, Sagan S (2007) Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem 79(5):1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Derossi D et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  • Ding Y et al (2015) An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH- sensitive hydrazone bond for enhancing tumor- targeted drug delivery. Int J Nanomedicine 10:6199–6214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35(3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Duchardt F, Ruttekolk IR, Verdurmen WPR, Lortat-Jacob H, Bürck J, Hufnagel H, Fischer R, van den Heuvel M, Löwik DWPM, Vuister GW, Ulrich A, de Waard M, Brock R (2009) A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. J Biol Chem 284(52):36099–36108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Andaloussi S, Johansson HJ, Holm T, Langel U (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15(10):1820–1826

    Article  CAS  PubMed  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88(2):223–233

    Article  CAS  PubMed  Google Scholar 

  • Elmquist A, Lindgren M, Bartfai T, Langel U (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A, Harashima H (2013) Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 21(6):1118–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides : ways to overcome endosomal entrapment. AAPS J 11(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzat K et al (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39(12):5284–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsman H, Bylund J, Oprea TI, Karlsson A, Boulay F, Rabiet MJ, Dahlgren C (2013) The leukocyte chemotactic receptor FPR2, but not the closely related FPR1, is sensitive to cell-penetrating pepducins with amino acid sequences descending from the third intracellular receptor loop. Biochim Biophys Acta 1833(8):1914–1923

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. J Biol Chem 276(8):5836–5840

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Mao S, Ditzel HJ, Farnaes L, Wirsching P, Lerner RA, Janda KD (2002) A cell penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg Med Chem 10:4057–4065

    Article  CAS  PubMed  Google Scholar 

  • Gomez JA, Gama V, Yoshida T, Sun W, Hayes P, Leskov K, Boothman D, Matsuyama S (2007) Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans 35(4):797–801

    Article  CAS  PubMed  Google Scholar 

  • Gomez JA, Chen J, Ngo J, Hajkova D, Yeh IJ, Gama V, Miyagi M, Matsuyama S (2010) Cell-penetrating penta-peptides (CPP5s): measurement of cell entry and protein-transduction activity. Pharmaceuticals 3(12):3594–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Villanueva D, Weissig V (2016) Delivery of biologically active molecules to mitochondria. In: Buhlman L (ed) Mitochondrial mechanisms of degeneration and repair in Parkinson’s disease. Springer, Cham, pp 255–267

    Chapter  Google Scholar 

  • Han K, Jeon M-J, Kim K-E, Park J, Choi SY (2000) Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and engrailed proteins. Mol Cells 10(6):0728–0732

    Article  CAS  Google Scholar 

  • Horton KL et al (2008) Mitochondria-penetrating peptides. Chem Biol 15(4):375–382

    Article  CAS  PubMed  Google Scholar 

  • Huang J et al (2013) Mitochondria-targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med 13(6):935–945

    Article  CAS  PubMed  Google Scholar 

  • Jean SR et al (2016) Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc Chem Res 49:1893–1902

    Article  CAS  PubMed  Google Scholar 

  • Jia Y et al (2016) SS31, a small molecule antioxidant peptide, attenuates β-amyloid elevation, mitochondrial/synaptic deterioration and cognitive deficit in SAMP8 mice. Curr Alzheimer Res 13(3):297–306

    Article  CAS  PubMed  Google Scholar 

  • Johansson HJ, El-Andaloussi S, Holm T, Mäe M, Jänes J, Maimets T, Langel Ü (2008) Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein. Mol Ther 16:115–123

    Article  CAS  Google Scholar 

  • Joliot A et al (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88:1864–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei N et al (2013) Mechanistic study of the uptake/permeation of cell-penetrating peptides across a caco-2 monolayer and their stimulatory effect on epithelial insulin transport. J Pharm Sci 102(11):3998–4008

    Article  CAS  PubMed  Google Scholar 

  • Kerkis A, Kerkis I, Rádis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, Yamane T (2004) Crotamine is a novel cell-penetrating protein from the venom of rattlesnake us. FASEB J 18(12):1407–1409

    Article  CAS  PubMed  Google Scholar 

  • Kilk K, Magzoub M, Pooga M, Göran Eriksson LE, Langel U, Gräslund A (2001) Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjug Chem 12(6):911–916

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K (2000) Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: a proline as a translocation promoting factor. Biochemistry 39(29):8648–8654

    Article  CAS  PubMed  Google Scholar 

  • Kumar S et al (2015) Peptides as skin penetration enhancers: mechanisms of action. J Control Release 199:168–178

    Article  CAS  PubMed  Google Scholar 

  • Lehto T et al (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106(2016):172–182

    Article  CAS  PubMed  Google Scholar 

  • Levy G (1965) Pharmacokinetics of salicylate elimination in man. J Pharm Sci 54(7):959–967

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2011) Mitochondria-targeted antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells. Biochem Biophys Res Commun 404(1):349–356

    Article  CAS  PubMed  Google Scholar 

  • Li K et al (2014) Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a toll-like receptor 2-mediated cell-penetrating peptide. Int J Cancer 134(3):692–702

    Article  CAS  PubMed  Google Scholar 

  • Liberman EA et al (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222(5198):1076–1078

    Article  CAS  PubMed  Google Scholar 

  • Lim S et al (2015) dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun 6:8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J (1995) Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270(24):14255–14258

    Article  CAS  PubMed  Google Scholar 

  • Lindgren M et al (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425

    Article  CAS  PubMed  Google Scholar 

  • Lundin P et al (2008) Distinct uptake routes of cell-penetrating peptide conjugates. Bioconjug Chem 19(12):2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Magzoub M, Sandgren S, Lundberg P, Oglęcka K, Lilja J, Wittrup A, Göran Eriksson LE, Langel U, Belting M, Gräslund A (2006) N-Terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun 348(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Manczak M et al (2010) Mitochondria-targeted antioxidants protect against Abeta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mano M, Henriques A, Paiva A, Prieto M, Gavilanes F, Simões S, Pedroso de Lima MC (2006) Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide-membrane interactions. Biochim Biophys Acta 1758:336–346

    Article  CAS  PubMed  Google Scholar 

  • Margus H, Padari K, Pooga M (2013) Insights into cell entry and intracellular trafficking of peptide and protein drugs provided by electron microscopy. Adv Drug Deliv Rev 65(8):1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Marks JR, Placone J, Hristova K, Wimley WC (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133(23):8995–9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín I, Teixidó M, Giralt E (2011) Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). ChemBioChem 12(6):896–903

    Article  PubMed  CAS  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15–16):694–704

    Google Scholar 

  • Mitchell DJ, Steinman L, Kim DT, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris MC et al (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19:1173–1176

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T et al (2013) The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J Control Release 171(2):216–224

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S (2009) Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Mol Ther 17(11):1868–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrollahi SA et al (2012) Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 80(5):639–646

    Article  CAS  PubMed  Google Scholar 

  • Oehlke J, Krause E, Wiesner B, Beyermann M, Bienert M (1997) Extensive cellular uptake into endothelial cells of an amphipathic β-sheet forming peptide. FEBS Lett 415(2):196–199

    Article  CAS  PubMed  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior nonendocytically. Biochim Biophys Acta 1414(1-2):127–139

    Article  CAS  PubMed  Google Scholar 

  • Oehlke J, Birth P, Klauschenz E, Wiesner B, Beyermann M, Oksche A, Bienert M (2002) Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides. Eur J Biochem 269(16):4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Oskolkov N, Arukuusk P, Copolovici D-M, Lindberg S, Margus H, Padari K, Pooga M, Langel U (2011) NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int J Peptide Res Ther 17(2):147–157

    Article  CAS  Google Scholar 

  • Pooga M, Hällbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Qian Z, Dougherty PG, Pei D (2015) Monitoring the cytoslic entry of cell-penetratin peptides using a pH-sensitive fluorophore. Chem Commun (Camb) 51(11):2162–2165

    Article  CAS  Google Scholar 

  • Reddy PH, Manczak M, Kandimalla R (2017) Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum Mol Genet 26(8):1483–1496

    Article  CAS  PubMed  Google Scholar 

  • Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16(5):1240–1245

    Article  CAS  PubMed  Google Scholar 

  • Rhee M, Davis P (2006) Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J Biol Chem 281(2):1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Scheller A, Oehlke J, Wiesner B, Dathe M, Krause E, Beyermann M, Melzig M, Bienert M (1999) Structural requirements for cellular uptake of α-helical amphipathic peptides. J Pept Sci 5(4):185–194

    Article  CAS  PubMed  Google Scholar 

  • Shin MC et al (2014) Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 102(2):575–587

    Article  PubMed  CAS  Google Scholar 

  • Song W et al (2005) A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Therapy and. Prevention 16:407–410

    Google Scholar 

  • Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel U (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467(1):165–176

    Article  CAS  PubMed  Google Scholar 

  • Sparr C et al (2013) Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob Agents Chemother 57(10):4689–4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart KM, Horton KL, Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6(13):2242

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10(3):601–619

    Article  CAS  PubMed  Google Scholar 

  • Taylor BN, Mehta RR, Yamada T, Lekmine F, Christov K, Chakrabarty AM, Green A, Bratescu L, Shilkaitis A, Beattie CW, Das Gupta TK (2009) Noncationic peptides obtained from Azurin preferentially enter cancer cells. Cancer Res 69(2):537–546

    Article  CAS  PubMed  Google Scholar 

  • Tréhin R, Krauss U, Beck-Sickinger AG, Merkle HP, Nielsen HM (2004) Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models. Pharm Res 21(7):1248–1256

    Article  PubMed  Google Scholar 

  • Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  PubMed  Google Scholar 

  • Weissig V (2015) DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use. In: Weissig V, Edeas M (eds) Mitochondrial medicine: vol II. Manipulating mitochondrial function. New York, NY, Springer New York, pp 1–11

    Google Scholar 

  • Wisnovsky S et al (2016) Mitochondrial chemical biology: new probes elucidate the secrets of the powerhouse of the cell. Cell Chem Biol 23(8):917–927

    Article  CAS  PubMed  Google Scholar 

  • Woldetsadik AD et al (2017) Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J 31(5):2168–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D et al (2002) A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning. Am J Physiol Heart Circ Physiol 283(2):H783–H791

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Manczak M, Reddy PH (2016) Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet 25(9):1739–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  PubMed  Google Scholar 

  • Zhao K et al (2005) Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol 70(12):1796–1806

    Article  CAS  PubMed  Google Scholar 

  • Zhao WY et al (2013) Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem 32(3):591–600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this manuscript. This work was supported by the Swedish Research Council for Natural Sciences (621-2011-5902), the Swedish Research Council for Medical Research (K2012-66X-21148-04-5), and the Swedish Cancer Foundation (CAN 2014/259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Pasquale Cerrato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerrato, C.P., Langel, Ü. (2018). Cell-Penetrating Peptides Targeting Mitochondria. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_26

Download citation

Publish with us

Policies and ethics