Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 595 Accesses

Abstract

As outlined in Sect. 1.7, the design of a fluorescent probe requires the selection of appropriate fluorophores and a suitable redox responsive group.

Parts of the text and figures of this chapter are reprinted from Chemical Communications, Issue 50, and Organic and Biomolecular Chemistry Issue 24, with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Massey, Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994)

    CAS  Google Scholar 

  2. J.D. Walsh, A.F. Miller, Flavin reduction potential tuning by substitution and bending. J. Mol. Struct. (Thoechem) 623, 185–195 (2003)

    Article  CAS  Google Scholar 

  3. A.J.W.G. Visser, S. Ghisla, V. Massey, F. MÜLler, C. Veeger, Fluorescence properties of reduced flavins and flavoproteins. Eur. J. Biochem. 101, 13–21 (1979)

    Article  CAS  Google Scholar 

  4. K. Koenig, H. Schneckenburger, Laser-induced autofluorescence for medical diagnosis. J. Fluoresc. 4, 17–40 (1994)

    Article  CAS  Google Scholar 

  5. J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999)

    Book  Google Scholar 

  6. J. Yeow, A. Kaur, M.D. Anscomb, E.J. New, A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chem. Commun. 50, 8181–8184 (2014)

    Article  CAS  Google Scholar 

  7. A. Kaur, K.W.L. Brigden, T.F. Cashman, S.T. Fraser, E.J. New, Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Organ. Biomol. Chem. 13, 6686–6689 (2015)

    Article  CAS  Google Scholar 

  8. D.E. Edmondson, T.P. Singer, Oxidation-reduction properties of the 8\(\alpha \)-substituted flavins. J. Biol. Chem. 248, 8144–8149 (1973)

    CAS  Google Scholar 

  9. V. Favaudon, Oxidation kinetics of 1, 5-dihydroflavin by oxygen in non-aqueous solvent. Eur. J. Biochem. 78, 293–307 (1977)

    Article  CAS  Google Scholar 

  10. Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita, S. Aoki, BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin. ChemBioChem 9, 853–856 (2008)

    Article  CAS  Google Scholar 

  11. R.M. Kierat, B.M. Thaler, R. Kramer, A fluorescent redox sensor with tuneable oxidation potential. Bioorg. Med. Chem. Lett. 20, 1457–1459 (2010)

    Article  CAS  Google Scholar 

  12. E.W. Miller, S.X. Bian, C.J. Chang, A fluorescent sensor for imaging reversible redox cycles in living cells. J. Am. Chem. Soc. 129, 3458–3459 (2007)

    Article  CAS  Google Scholar 

  13. Y.M. Go, D.P. Jones, Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780, 1273–1290 (2008)

    Article  CAS  Google Scholar 

  14. J. van Meerloo, G.J.L. Kaspers, J. Cloos, Cell sensitivity assays: the MTT assay, in Methods in Molecular Biology , vol. 731, (Clifton, N.J., 2011), pp. 237–245

    Google Scholar 

  15. A.A. Starkov, The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 1147, 37–52 (2008)

    Article  CAS  Google Scholar 

  16. M.F. Ross, T.A. Prime, I. Abakumova, A.M. James, C.M. Porteous, R.A.J. Smith, M.P. Murphy, Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem. J. 411, 633–645 (2008)

    Article  CAS  Google Scholar 

  17. M.P. Murphy, Targeting lipophilic cations to mitochondria. Biochimica et Biophysica Acta—Bioenergetics 1777, 1028–1031 (2008)

    Article  CAS  Google Scholar 

  18. A.M. James, H.M. Cochemé, M.P. Murphy, Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mech. Ageing Dev. 126, 982–986 (2005)

    Article  CAS  Google Scholar 

  19. R. Kuhn, K. Reinemund, Über die Synthese des 6.7.9-Trimethyl-flavins (Lumi-lactoflavins). Berichte der deutschen chemischen Gesellschaft (A and B Series) 67, 1932–1936 (1934)

    Google Scholar 

  20. K.W. Dunn, M.M. Kamocka, J.H. McDonald, A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, A. (2018). Flavin Based Redox Probes. In: Fluorescent Tools for Imaging Oxidative Stress in Biology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-73405-7_2

Download citation

Publish with us

Policies and ethics