Skip to main content

Non-thyroidal Illness Syndrome

  • Chapter
  • First Online:
Pediatric Endocrinology

Abstract

Non-thyroidal illness is the term used to describe the changes in thyroid hormone and thyroid-stimulating hormone (TSH) with acute illness not caused by an intrinsic abnormality of thyroid function. In children, non-thyroidal illness is most commonly seen in acutely ill patients admitted to pediatric or neonatal intensive care units (ICUs). The characteristic decrease in thyroid hormone levels also can be seen with starvation, trauma, or surgical procedures. Non-thyroidal illness probably occurs with any severe illness, and the pattern of changes in thyroid hormones correlates with the severity of illness. Typically, the first changes are a decrease in serum triiodothyronine (T3) and a rise in reverse T3 (rT3) levels. This disorder has been referred to as the low-T3 syndrome or the euthyroid sick syndrome. However, as there is disagreement about whether patients truly are “euthyroid,” non-thyroidal illness syndrome (NTIS) is the term preferred at present.

The changes in thyroid hormone and TSH concentrations with NTIS are believed to be an adaptive mechanism, in that they protect the body from high metabolic demands in the face of starvation or acute illness. However, there are certain clinical situations where this concept has been challenged, with the belief that the changes are maladaptive and clinical improvement may be seen with treatment with triiodothyronine (l-T3) or levothyroxine (l-T4). In particular, there is some evidence that preterm babies <27 weeks’ gestation may show improvement in IQ scores with l-T4 treatment and that infants and children undergoing cardiac surgery may show improved post-op cardiac function with l-T3 treatment. Further research is needed to resolve these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. 2010;205:1–13.

    Article  CAS  Google Scholar 

  2. Wiersinga WM, Van Den Berghe G. Nonthyroidal illness. In: Braverman LE, Copper DS, editors. Werner & Ingbar’s the thyroid. 10th ed. Philadelphia: Lippincott, Williams & Williams; 2013. p. 203–17.

    Google Scholar 

  3. De Groot LJ. Non-thyroidal illness syndrome is a manifestation of hypothalamic–pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapy. Crit Care Clin. 2006;22:57–86.

    Article  Google Scholar 

  4. Kaptein E, Grieb D, Spencer CA, Wheeler WS, Nicoloff JT. Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illnesses. J Clin Endocrinol Metab. 1981;53:764–71.

    Article  CAS  Google Scholar 

  5. Beckett GJ, Wilkinson E, Rae PW, et al. The clinical utility of a non-isotropic two-step assay (DELPHIA) and an analogue radioimmunoassay (SimulTRAC) for free thyroxine compared. Ann Clin Biochem. 1991;28:335–44.

    Article  Google Scholar 

  6. Chopra IJ. Simultaneous measurements of free thyroxine and free 3,5,3′-triiodothyronine in undiluted serum by direct equilibrium dialysis/radioimmunoassay: evidence that free triiodothyronine and free thyroxine are normal in many patients with the low triiodothyronine syndrome. Thyroid. 1998;8:249–57.

    Article  CAS  Google Scholar 

  7. Faber J, Siersback-Nielsen K. Serum free 3,5,3′-triiodothyronine (T3) in non-thyroidal somatic illness, as measured by ultrafiltration and immunoextraction. Clin Chim Acta. 1996;256:115–23.

    Article  CAS  Google Scholar 

  8. Wehman RE, Gregerman RI, Burns WH, et al. Suppression of thyrotropin in the low-thyroxine state of severe nonthyroidal illness. N Engl J Med. 1985;312:546–52.

    Article  Google Scholar 

  9. Balogh A, Carayon P, Conte-Devolx B, et al. Guidelines Committee, National Academy of Clinical Biochemistry. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:1–126.

    Google Scholar 

  10. Adriaanse R, Romijn JA, Brabant G, et al. Pulsatile thyrotropin secretion in nonthyroidal illness. J Clin Endocrinol Metab. 1993;77:1313–7.

    CAS  PubMed  Google Scholar 

  11. Fliers E, Guldenaar SEF, Wiersinga WM, et al. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab. 1997;82:4032–6.

    CAS  PubMed  Google Scholar 

  12. Legradi G, Emerson CH, Ahima RS, et al. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138:2569–76.

    Article  CAS  Google Scholar 

  13. Van der Poll T, van Zee KJ, Endert E, et al. Interleukin-1 receptor blockade does not affect endotoxin-induced changes in plasma thyroid hormone and thyrotropin concentrations in man. J Clin Endocrinol Metab. 1995;80:1341–6.

    PubMed  Google Scholar 

  14. Lechan RM, Fekete C. Role of thyroid hormone deiodination in the hypothalamus. Thyroid. 2005;15:883–97.

    Article  CAS  Google Scholar 

  15. Bianco AC, Kim BW. Intracellular pathways of iodothyronine metabolism/implications of deiodination for thyroid hormone action. In: Braverman LE, Cooper DS, editors. Werner & Ingbar’s the thyroid. 10th ed. Philadelphia: Lippincott, Williams & Williams; 2013. p. 93–103.

    Google Scholar 

  16. Peeters RP, Wouters PJ, Kaptein E, et al. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.

    Article  CAS  Google Scholar 

  17. St Germain DL, Galton VA, Hernandez A. Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology. 2009;150:1097–107.

    Article  CAS  Google Scholar 

  18. Jaume JC, Mendel CM, Frost PH, Greenspan FS, Laughton CW. Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum-free thyroxine concentrations as measured by equilibrium dialysis. Thyroid. 1996;6:79–83.

    Article  CAS  Google Scholar 

  19. Mebis L, Paletta D, Debaveye Y, et al. Expression of thyroid hormone transporters during critical illness. Eur J Endocrinol. 2009;161:243–50.

    Article  CAS  Google Scholar 

  20. Fisher DA. Thyroid function and dysfunction in premature infants. Pediatr Endocrinol Rev. 2007;4:317–28.

    PubMed  Google Scholar 

  21. Williams FL, Ogston SA, van Toor H, et al. Serum thyroid hormones in preterm infants: associations with postnatal illnesses and drug usage. J Clin Endocrinol Metab. 2005;90:5954–63.

    Article  CAS  Google Scholar 

  22. Hadeed AJ, Assay LK, Klein AH, Fisher DA. Significance of transient postnatal hypothyroxinemia in premature infants with and without respiratory distress syndrome. Pediatrics. 1981;68:494–8.

    CAS  PubMed  Google Scholar 

  23. Reuss ML, Paneth N, Pinto-Martin JA, et al. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Engl J Med. 1996;334:821–7.

    Article  CAS  Google Scholar 

  24. Delahunty C, Falconer S, Hume R, Jackson L, Midgley P, Mirfield M, et al. Levels of neonatal thyroid hormone in preterm infants and neurodevelopmental outcomes at 5 ½ years: millennium cohort study. J Clin Endocrinol Metab. 2010;95:4898–908.

    Article  CAS  Google Scholar 

  25. Williams FL, Simpson J, Delahunty C, et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J Clin Endocrinol Metab. 2004;89:5314–20.

    Article  CAS  Google Scholar 

  26. Van Wassenaer AG, Kok JH, de Vijlder JJM, et al. Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks’ gestation. N Engl J Med. 1997;336:21–6.

    Article  Google Scholar 

  27. Van Wassenaer AG, Briet JM, van Baar A, Smit BJ, Tamminga P, de Vijlder JJ, Kok JH. Free thyroxine levels during the first weeks of life and neurodevelopmental outcome until the age of 5 years in very preterm infants. Pediatrics. 2002;110:534–9.

    Article  Google Scholar 

  28. Osborn DA, Hunt RW. Postnatal thyroid hormones for preterm infants with transient hypothyroxinemia. Cochrane Database Syst Rev. 2007;(1):CDC005945.

    Google Scholar 

  29. Hebbar K, Rigby MR, Felner EI, Easley KA, Fortenberry JD. Neuroendocrine dysfunction in pediatric critical illness. Pediatr Crit Care Med. 2009;10:35–40.

    Article  Google Scholar 

  30. Hu YY, Li GM, Want W. Euthyroid sick syndrome in children with diabetic ketoacidosis. Saudi Med J. 2015;36:243–7.

    Article  CAS  Google Scholar 

  31. Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illness and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63:1–8.

    Article  CAS  Google Scholar 

  32. Becker RA, Vaughan GM, Ziegler MG, Seraile LG, Goldfarb IW, Mnnsour EH, McManus WF, Pruitt BA, Mason AD Jr. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit Care Med. 1982;10:870–5.

    Article  CAS  Google Scholar 

  33. Dimmick SJ, Badawi N, Randell T. Thyroid hormone supplementation for the prevention of morbidity and mortality in infants undergoing cardiac surgery (Review). Cochrane Collab. 2009:1–23.

    Google Scholar 

  34. Mainwaring RD, Nelson JC. Supplementation of thyroid hormone in children undergoing cardiac surgery. Cardiol Young. 2001;12:211–7.

    Article  Google Scholar 

  35. Babazadeh K, Tabib A, Eshragi P, Bakhshandeh H, Zamani H. Non-thyroidal illness syndrome and cardiopulmonary bypass in children with congenital heart disease. Caspian J Intern Med. 2014;5:235–42.

    PubMed  PubMed Central  Google Scholar 

  36. Haas NA, Camphausen CK, Kececioglu D. Clinical review: thyroid hormone replacement in children after cardiac surgery—is it worth a try? Crit Care. 2006;10:213–20.

    Article  Google Scholar 

  37. Kaptein EM, Sanchez A, Beale E, Chan LS. Thyroid hormone therapy for postoperative nonthyroidal illnesses: a systemic review and synthesis. J Clin Endocrinol Metab. 2010;95:4526–34.

    Article  CAS  Google Scholar 

  38. Bettendorf M, Schmidt KG, Grulich-Henn J, Ulmer HE, Heinrich UE. Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet. 2000;356:529–34.

    Article  CAS  Google Scholar 

  39. Portman MA, Fearneyhough C, Ning X-H, Duncan BW, Rosenthal G, Lupinetti FM. Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg. 2000;120:604–8.

    Article  CAS  Google Scholar 

  40. Chowdhury D, Ojamaa K, Parnell VA, McCahon C, Sison CP, Klein I. A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg. 2001;122:1023–5.

    Article  CAS  Google Scholar 

  41. Mackie AS, Booth KL, Newburger JW, Gauvreau K, Huang SA, Laussen PC, et al. A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg. 2005;130:810–6.

    Article  CAS  Google Scholar 

  42. Kaptein EM. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr Rev. 1996;17:45–63.

    Article  CAS  Google Scholar 

  43. Ramirez G, Jubiz W, Futch CF, Bloomer HA, Siegler R, Kolff WJ. Thyroid abnormalities in renal failure. Ann Intern Med. 1973;79:500–4.

    Article  CAS  Google Scholar 

  44. Pasqualini T, Zantleifer D, Balzateti M, Branillo E, Fainstein-Day P, Ramirez J, Ruiz S, Gutman R, Ferraris J. Evidence of hypothalamic–pituitary–thyroid abnormalities in children with end-stage renal disease. J Pediatr. 1991;118:873–8.

    Article  CAS  Google Scholar 

  45. Cm H, Domenech JM, Montoya E. Thyrotropin-releasing hormone responsiveness and degradation in children with chronic renal failure: effect of time of evolution. Acta Endocrinol. 1982;99:508–16.

    Google Scholar 

  46. Acker CG, Singh AR, Flick RP, Bernardini J, Greenberg A, Johnson JP. A trial of thyroxine in acute renal failure. Kidney Int. 2000;57:293–8.

    Article  CAS  Google Scholar 

  47. Acker CG, Flick R, Shapiro R, Scantlebury VP, Jordan ML, Vivas C, Greenberg A, Johnson JP. Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant. 2002;2:57–61.

    Article  CAS  Google Scholar 

  48. Lee SY, Chesdachai S, Moon JL, He XM, Tangpricha V, Braverman LE. Thyroid function in patients with cystic fibrosis: no longer a concern? Thyroid. 2016;26:875–9.

    Article  CAS  Google Scholar 

  49. Holtmann M, Duketis E, Goth K, Poustka L, Boelte S. Severe affective and behavioral dysregulation in youth is associated with increased serum TSH. J Affect Disord. 2010;121:184–8.

    Article  CAS  Google Scholar 

  50. Gracious BL, Findling RL, Seman C, Youngstrom EA, Demeter CA, Clabrese JR. Elevated thyrotropin in bipolar youths prescribed both lithium and divalproex sodium. J Am Acad Child Adolesc Psychiatry. 2004;43:215–20.

    Article  Google Scholar 

  51. Hillegers MH, Reighart CG, Wais M, Verhulst FC, Ormel J, Nolen WA, Drexhage HA. Signs of higher prevalence of autoimmune thyroiditis in female offspring of bipolar parents. Eur Neuropsychopharmacol. 2007;17:394–9.

    Article  CAS  Google Scholar 

  52. Kirkegaard C, Faber J. The role of thyroid hormones in depression. Eur J Endocrinol. 1998;138:1–9.

    Article  CAS  Google Scholar 

  53. Altshuler LL, Bauer M, Frye MA, et al. Does triiodothyronine augmentation accelerate tricyclic antidepressant response? A review and meta-analysis of the literature. Am J Psychiatry. 2001;158:1617–22.

    Article  CAS  Google Scholar 

  54. Hauser P, Xametkin AJ, Martinez P, Vitiello B, Matochik JA, Misxon AJ, Weintruab BD. ADHD and the thyroid controversy. J Am Acad Child Adolesc Psychiatry. 1994;33:756–8.

    Article  CAS  Google Scholar 

  55. Elia J, Gulotta C, Rose SR, Marin G, Rapoport JL. Thyroid function and attention-deficit hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 1994;33:169–72.

    Article  CAS  Google Scholar 

  56. Verrotti A, Laus M, Scardapane A, Franzoni E, Chiarelli F. Thyroid hormones in children with epilepsy during long-term administration of carbamazepine and valproate. Eur J Endocrinol. 2009;160:80–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa D. Madison MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madison, L.D., LaFranchi, S.H. (2018). Non-thyroidal Illness Syndrome. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics