Skip to main content

Abstract

From the point of view of Complexity Sciences, health can be considered as the state of dynamical balance between robustness and adaptability to the changes in the environment. We consider that any human disease can be found in physiological time series by deviations from this point that reflects the loss of this balance. Thus, it is possible to find biomarkers based on non-invasive physiological parameters that characterize the critical healthy state, and could help as early warnings auxiliary for clinical diagnoses of different diseases. In this work, we present a time-domain analysis using the distribution moments, autocorrelation function, Poincaré diagrams, and the spectral analysis of interbeat intervals and blood pressure time series for control subjects of different age and gender, and diabetic patients. As a preliminary result, a statistical significant difference was found between health and disease in the statistical moments of blood pressure and heart rate variability that can be proposed as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porta A, Bari V, Ranuzzi G et al (2017) Assessing multiscale complexity of short heart rate variability series through a model-based linear approach. Chaos Interdiscip. J Nonlinear Sci 27:093901

    Google Scholar 

  2. Valenza G, Citi L, Garcia RG et al (2017) Complexity variability assessment of nonlinear time-varying cardiovascular control. Sci Rep 7:42779. https://doi.org/10.1038/srep42779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alberga D, Mangiatordi GF (2016) Understanding complexity of physiology by combined molecular simulations and experiments: anion channels as a proof of concept. J Physiol 594:2777–2778. https://doi.org/10.1113/JP272001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raoufy MR, Ghafari T, Mani AR (2017) Complexity analysis of respiratory dynamics. Am J Respir Crit Care Med 196:247–248. https://doi.org/10.1164/rccm.201701-0026LE

    Article  PubMed  Google Scholar 

  5. Calvani R, Picca A, Cesari M et al (2017) Biomarkers for sarcopenia: reductionism vs. complexity. Curr Protein Pept Sci. https://doi.org/10.2174/1389203718666170516115422

  6. Tippett LJ, Waldvogel HJ, Snell RG et al (2017) The complexity of clinical Huntington’s disease: developments in molecular genetics, neuropathology and neuroimaging biomarkers. In: Neurodegenerative diseases. Springer, Cham, pp 129–161

    Chapter  Google Scholar 

  7. de la Torre-Luque A, Bornas X, Balle M, Fiol-Veny A (2016) Complexity and nonlinear biomarkers in emotional disorders: a meta-analytic study. Neurosci Biobehav Rev 68:410–422. https://doi.org/10.1016/j.neubiorev.2016.05.023

    Article  PubMed  Google Scholar 

  8. Dias LM, Thodima V, Friedman J et al (2016) Cross-platform assessment of genomic imbalance confirms the clinical relevance of genomic complexity and reveals loci with potential pathogenic roles in diffuse large B-cell lymphoma. Leuk Lymphoma 57:899–908. https://doi.org/10.3109/10428194.2015.1080364

    Article  CAS  PubMed  Google Scholar 

  9. Rivera AL, Estañol B, Fossion R et al (2016) Loss of breathing modulation of heart rate variability in patients with recent and long standing diabetes mellitus type II. PLoS One 11:e0165904. https://doi.org/10.1371/journal.pone.0165904

    Article  PubMed  PubMed Central  Google Scholar 

  10. Medenwald D, Swenne CA, Loppnow H et al (2017) Prognostic relevance of the interaction between short-term, metronome-paced heart rate variability, and inflammation: results from the population-based CARLA cohort study. Europace 19:110–118. https://doi.org/10.1093/europace/euv333

    PubMed  Google Scholar 

  11. Berntson GG, Thomas Bigger J, Eckberg DL et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x

    Article  CAS  PubMed  Google Scholar 

  12. Malik M (1996) Heart rate variability. Ann Noninvasive Electrocardiol 1:151–181. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x

    Article  Google Scholar 

  13. Whittle J (2017) Blood pressure variability predicts clinical outcomes: now what? Hypertension 69:584–586. https://doi.org/10.1161/HYPERTENSIONAHA.116.08806

    Article  CAS  PubMed  Google Scholar 

  14. Dolan E, O’Brien E (2010) Blood pressure variability: clarity for clinical practice. Hypertension 56:179–181. https://doi.org/10.1161/HYPERTENSIONAHA.110.154708

    Article  CAS  PubMed  Google Scholar 

  15. Levy MN (1971) Sympathetic-Parasympathetic interactions in the heart. Circ Res 29:437–445. https://doi.org/10.1161/01.RES.29.5.437

    Article  CAS  PubMed  Google Scholar 

  16. Rivera AL, Estañol B, Sentíes-Madrid H et al (2016) Heart rate and systolic blood pressure variability in the time domain in patients with recent and long-standing diabetes mellitus. PLoS One 11:e0148378. https://doi.org/10.1371/journal.pone.0148378

    Article  PubMed  PubMed Central  Google Scholar 

  17. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19

    Article  CAS  PubMed  Google Scholar 

  18. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996) Heart rate variability. Circulation 93:1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

    Article  Google Scholar 

  19. Pagani M, Lombardi F, Guzzetti S et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  CAS  PubMed  Google Scholar 

  20. Akselrod S, Gordon D, Ubel FA et al (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  21. Acharya UR, Joseph KP, Kannathal N et al (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051. https://doi.org/10.1007/s11517-006-0119-0

    Article  Google Scholar 

  22. Kamen PW, Tonkin AM (1995) Application of the Poincaré plot to heart rate variability: a new measure of functional status in heart failure. Aust NZ J Med 25:18–26. https://doi.org/10.1111/j.1445-5994.1995.tb00573.x

    Article  CAS  Google Scholar 

  23. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48:1342–1347. https://doi.org/10.1109/10.959330

    Article  CAS  PubMed  Google Scholar 

  24. Ewing DJ, Martyn CN, Young RJ, Clarke BF (1985) The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8:491–498. https://doi.org/10.2337/diacare.8.5.491

    Article  CAS  PubMed  Google Scholar 

  25. Saul JP, Albrecht P, Berger RD, Cohen RJ (1987) Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comput Cardiol 14:419–422

    Google Scholar 

  26. Kay SM, Marple SL (1981) Spectrum analysis—a modern perspective. Proc IEEE 69:1380–1419

    Article  Google Scholar 

  27. Saykrs BM (1973) Analysis of heart rate variability. Ergonomics 16:17–32. https://doi.org/10.1080/00140137308924479

    Article  Google Scholar 

  28. Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  29. Pomeranz B, Macaulay RJ, Caudill MA et al (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol-Heart Circ Physiol 248:H151–H153

    Article  CAS  Google Scholar 

  30. Kobayashi M, Musha T (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 29:456–457

    Article  CAS  PubMed  Google Scholar 

  31. Goldberger AL, West BJ (1987) Fractals in physiology and medicine. Yale J Biol Med 60:421

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyengar N, Peng CK, Morin R et al (1996) Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol Regul Integr Comp Physiol 271:R1078–R1084

    Article  CAS  Google Scholar 

  33. Huikuri HV, Seppänen T, Koistinen MJ et al (1996) Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation 93:1836–1844

    Article  CAS  PubMed  Google Scholar 

  34. Ciccone AB, Siedlik JA, Wecht JM et al (2017) Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve 56:674–678. https://doi.org/10.1002/mus.25573

    Article  PubMed  Google Scholar 

  35. Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet Gynecol 79:249–255

    CAS  PubMed  Google Scholar 

  36. Pincus SM, Goldberger AL (1994) Physiological time-series analysis: what does regularity quantify? Am J Physiol-Heart Circ Physiol 266:H1643–H1656

    Article  CAS  Google Scholar 

  37. Mäkikallio TH, Seppänen T, Niemelä M et al (1996) Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction. J Am Coll Cardiol 28:1005–1011

    Article  PubMed  Google Scholar 

  38. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314

    Article  CAS  PubMed  Google Scholar 

  39. Goldberger AL, Amaral LAN, Glass L et al (2000) PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101:e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215

    Article  CAS  PubMed  Google Scholar 

  40. Bigger JT, Steinman RC, Rolnitzky LM et al (1996) Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 93:2142–2151

    Article  PubMed  Google Scholar 

  41. Huikuri HV, Mäkikallio TH, Airaksinen KJ et al (1998) Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation 97:2031–2036

    Article  CAS  PubMed  Google Scholar 

  42. Yamamoto Y, Hughson RL (1991) Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 71:1143–1150

    Article  CAS  PubMed  Google Scholar 

  43. Peng C-K, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87

    Article  CAS  PubMed  Google Scholar 

  44. Hausdorff JM, Peng CK, Ladin ZVI et al (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78:349–358

    Article  CAS  PubMed  Google Scholar 

  45. Shafqat K, Pal SK, Kumari S, Kyriacou PA (2009) Empirical mode decomposition (EMD) analysis of HRV data from locally anesthetized patients. In: 2009 annual international conference of the IEEE engineering in medicine and biology society, pp 2244–2247

    Google Scholar 

  46. Iatsenko D, McClintock PV, Stefanovska A (2015) Nonlinear mode decomposition: a noise-robust, adaptive decomposition method. Phys Rev E 92:032916

    Article  Google Scholar 

  47. Morales IO, Landa E, Angeles CC et al (2015) Behavior of early warnings near the critical temperature in the two-dimensional Ising model. PLoS One 10:e0130751

    Article  PubMed  PubMed Central  Google Scholar 

  48. Acebrón JA, Bonilla LL, Pérez Vicente CJ et al (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys 77:137–185. https://doi.org/10.1103/RevModPhys.77.137

    Article  Google Scholar 

  49. Cumin D, Unsworth CP (2007) Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Phys Nonlinear Phenom 226:181–196. https://doi.org/10.1016/j.physd.2006.12.004

    Article  Google Scholar 

  50. Malik M, Camm AJ (1993) Components of heart rate variability—what they really mean and what we really measure. Am J Cardiol 72:821–822

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien IA, O’Hare P, Corrall RJ (1986) Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Heart 55:348–354. https://doi.org/10.1136/hrt.55.4.348

    Article  Google Scholar 

  52. Levy MN (1984) Cardiac sympathetic-parasympathetic interactions. Fed Proc 43:2598–2602

    CAS  PubMed  Google Scholar 

  53. Horn EH, Lee ST (1965) Electronic evaluations of the fetal heart rate patterns preceding fetal death: further observation. Am J Obster Gynecol 87:824–826

    Google Scholar 

  54. Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  55. Malik M, Farrell T, Cripps T, Camm AJ (1989) Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 10:1060–1074

    Article  CAS  PubMed  Google Scholar 

  56. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131. https://doi.org/10.1016/j.ijcard.2009.09.543

    Article  PubMed  Google Scholar 

  57. Hellman JB, Stacy RW (1976) Variation of respiratory sinus arrhythmia with age. J Appl Physiol 41:734–738

    Article  CAS  PubMed  Google Scholar 

  58. Pikkujämsä SM, Mäkikallio TH, Sourander LB et al (1999) Cardiac interbeat interval dynamics from childhood to senescence. Circulation 100:393–399

    Article  PubMed  Google Scholar 

  59. Antelmi I, Paula RSD, Shinzato AR et al (2004) Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 93:381–385. https://doi.org/10.1016/j.amjcard.2003.09.065

    Article  PubMed  Google Scholar 

  60. Koenig J, Thayer JF (2016) Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev 64:288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007

    Article  PubMed  Google Scholar 

  61. Malpas SC, Maling TJB (1990) Heart-rate variability and cardiac autonomic function in diabetes. Diabetes 39:1177–1181. https://doi.org/10.2337/diab.39.10.1177

    Article  CAS  PubMed  Google Scholar 

  62. Schmitt DT, Ivanov PC (2007) Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly. Am J Physiol Regul Integr Comp Physiol 293:R1923–R1937. https://doi.org/10.1152/ajpregu.00372.2007

    Article  CAS  PubMed  Google Scholar 

  63. Kovatchev BP, Farhy LS, Cao H et al (2003) Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr Res 54:892–898. https://doi.org/10.1203/01.PDR.0000088074.97781.4F

    Article  PubMed  Google Scholar 

  64. Bauer A, Kantelhardt JW, Barthel P et al (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681

    Article  PubMed  Google Scholar 

  65. Robles-Cabrera A, Michel-Chavez A, Callejas-Rojas RC et al (2014) The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure. Rev Neurol 59:508–516

    PubMed  Google Scholar 

  66. Vaschillo EG, Vaschillo B, Lehrer PM (2006) Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback 31:129–142

    Article  PubMed  Google Scholar 

  67. Floras JS (2013) Blood pressure variability: a novel and important risk factor. Can J Cardiol 29:557–563

    Article  PubMed  Google Scholar 

  68. Parati G, Ochoa JE, Salvi P et al (2013) Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care 36:S312–S324

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to J. A. López-Rivera for grammatical review. Financial funding for this work was supplied by Dirección General de Asuntos del Personal Académico from Universidad Nacional Autónoma de México (UNAM) grants PAPIIT IN106215, IV100116 and IA105017; grants 2015-02-1093, 2016-01-2277 and CB-2011-01-167441 from Consejo Nacional de Ciencia y Tecnología (CONACyT), and the Newton Advanced Fellowship awarded to RF by the Academy of Medical Sciences through the UK Government’s Newton Fund program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, A.L., Estañol, B., Robles-Cabrera, A., Toledo-Roy, J.C., Fossion, R., Frank, A. (2018). Looking for Biomarkers in Physiological Time Series. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_6

Download citation

Publish with us

Policies and ethics