Skip to main content

Inference for μ, γ and F

  • Chapter
  • First Online:
Mathematical Foundations of Time Series Analysis
  • 3645 Accesses

Abstract

Assumptions:

$$X_{t}\in \mathbb {R}\text{ (}t\in \mathbb {Z}\text{) weakly stationary, } \mu =E\left ( X_{t}\right )$$
$$\displaystyle f_{X}\left ( \lambda \right ) =\frac {1}{2\pi }\sum _{t=-\infty }^{\infty }e^{-ik\lambda }\gamma _{X}\left ( k\right )$$
$$\displaystyle0<f_{X}\left ( 0\right ) <\infty$$
$$\displaystyle\bar {x}=n^{-1}\sum _{t=1}^{n}X_{t}$$

Then

$$var\left ( \bar {x}\right ) \underset {n\rightarrow \infty }{\sim }2\pi f_{X}\left ( 0\right ) n^{-1}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenstedt, R. K. (1974). On large-sample estimation for the mean of a stationary random sequence. The Annals of Statistics, 2(6), 1095–1107.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, T. W. (1971). The statistical analysis of time series. New York: Wiley.

    Google Scholar 

  • Basrak, B., Davis, R. A., & Mikosch, T. (1999). The sample ACF of a simple bilinear process. Stochastic Processes and Their Applications, 83, 1–14.

    Google Scholar 

  • Beltrao, K. I., & Bloomfield, P. (1987). Determining the bandwidth of a kernel spectrum estimate. Journal of Time Series Analysis, 8, 21–38.

    Google Scholar 

  • Beran, J., Feng, Y., Ghosh, S., & Kulik, R. (2013). Long-memory processes. New York: Springer.

    Google Scholar 

  • Beran, J., & Künsch, H. (1985). Location estimators for processes with long-range dependence. Research Report No. 40, Seminar für Statistik, ETH, Zurich.

    Google Scholar 

  • Brillinger, D. R. (1969). Asymptotic properties of spectral estimates of second order. Biometrika, 56, 375–390.

    Google Scholar 

  • Brillinger, D. R. (2001). Time series: Data analysis and theory. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods. New York: Springer.

    Google Scholar 

  • Dahlhaus, R. (1995). Efficient location and regression estimation for long range dependent regression models. The Annals of Statistics, 23, 1029–1047.

    Google Scholar 

  • Franke, J., & Härdle, W. (1992). On bootstrapping kernel spectral estimates. The Annals of Statistics, 20(1), 121–145.

    Google Scholar 

  • Ghosh, S. (2017). Kernel smoothing: Principles, methods and applications. New York: Wiley.

    Google Scholar 

  • Grenander, U., & Rosenblatt, M. (1957). Statistical analysis of stationary time series. New York: Wiley.

    Google Scholar 

  • Hannan, E. J. (1970). Multiple time series. New York: Wiley.

    Google Scholar 

  • Liu, W., & Wu, W. B. (2010). Asymptotics of spectral density estimates. Econometric Theory, 26, 1218–1245.

    Google Scholar 

  • Mikosch, T., & Starica, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process. Annals of Statistics, 28(5), 1427–1451.

    Google Scholar 

  • Priestley, M. B. (1981). Spectral analysis and time series. San Diego: Academic Press.

    Google Scholar 

  • Rosenblatt, M. (1984). Asymptotic normality, strong mixing, and spectral density estimates. Annals of Probability, 12, 1167–1180.

    Google Scholar 

  • Samarov, A., & Taqqu, M. S. (1988). On the efficiency of the sample mean in long-memory noise. Journal of Time Series Analysis, 9(2), 191–200.

    Google Scholar 

  • Shao, X., & Wu, W. B. (2007). Asymptotic spectral theory for nonlinear time series. The Annals of Statistics, 35(4), 1773–1801.

    Google Scholar 

  • Yajima, Y. (1988). On estimation of a regression model with long term errors. The Annals of Statistics, 16(2), 791–807.

    Google Scholar 

  • Yajima, Y. (1991). Asymptotic properties of the LSE in a regression model with long-memory stationary errors. The Annals of Statistics, 19, 158–177.

    Google Scholar 

  • Zurbenko, I. G. (1986). The spectral analysis of time series. Amsterdam: North-Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beran, J. (2017). Inference for μ, γ and F . In: Mathematical Foundations of Time Series Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-74380-6_9

Download citation

Publish with us

Policies and ethics