Skip to main content

Rewiring Extremophilic Electrocatalytic Processes for Production of Biofuels and Value-Added Compounds from Lignocellulosic Biomass

  • Chapter
  • First Online:
Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power

Abstract

This chapter will introduce the basic concepts of bioelectrocatalysis and the advantages of extremophiles for bioelectrochemical systems. The chapter will discuss electrogenic activity and electron transfer characteristics of extremophiles and their applications in microbial fuel cells, microbial electrolytic cells, microbial desalination cells, and microbial electrosynthesis. The use of extremophilic bioprocesses for production of bioenergy and value-added products from lignocellulosic biomass will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov SM, Sadraddinova ER, Shestakov AI, Voronin OG, Karyakin AA, Zorin NA, Netrusov AI (2013) Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode. https://doi.org/10.1371/journal.pone.0083004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bella RSD, Hirankumar G, Krishnaraj RN, Prem Anand D (2016) Novel proton conducting polymer electrolyte and its application in microbial fuel cell. Mater Lett 164:551–553

    Article  CAS  Google Scholar 

  • Bhalla A, Kainth AS, Sani RK (2013) Draft genome sequence of lignocellulose-degrading thermophilic bacterium Geobacillus sp. strain WSUCF1. Genome Announc 1(4):e00595-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhalla A, Bischoff KM, Sani RK (2014a) Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:963. https://doi.org/10.1186/s12896-014-0106-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014b) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 165:314–318

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bischoff KM, Sani RK (2015) Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 3:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhuvaneswari A, Krishnaraj RN, Berchmans S (2013) Metamorphosis of pathogen to electrigen at the electrode/electrolye interface: direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity. Electrochem Commun 34:25–28

    Article  CAS  Google Scholar 

  • Cao X, Huang X, Liang X, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  PubMed  Google Scholar 

  • Catal T, Cysneiros D, O'Flaherty V, Leech D (2011) Electricity generation in single chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresour Technol 102(1):404–410

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Jung E, Park H, Paik SR, Jung S, Kim S (2004) Construction of microbial fuel cells using Thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull Kor Chem Soc 25(6):813–818

    Article  CAS  Google Scholar 

  • Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrog Energy 38(35):15638–15645

    Article  CAS  Google Scholar 

  • Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49(2):1225–1232

    Article  CAS  PubMed  Google Scholar 

  • Gregoire KP, Becker JG (2012) Design and characterization of a microbial fuel cell for the crop residue to electricity. Bioresour Technol 119:208–215

    Article  CAS  PubMed  Google Scholar 

  • Hassan SH, Kim YS, Oh SE (2012) Power generation from cellulose using mixed and pure conversion of a lignocellulosic cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microb Technol 51(5):269–273

    Article  CAS  Google Scholar 

  • Holmes DE et al (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8(10):1805–1815

    Article  CAS  PubMed  Google Scholar 

  • https://www.eia.gov/todayinenergy/detail.php?id=30652

  • Karthikeyan R, Navanietha Krishnaraj R, Selvam A, Woon-Chung Wong J, Lee PKH, Leung MKH, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Fu Q, Maeda H, Sato K (2017) Draft genome sequence of a novel Coriobacteriaceae sp. strain, EMTCatB1, reconstructed from the metagenome of a thermophilic electromethanogenic biocathode. Genome Announc 5:e00022-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodama Y, Watanabe K (2011) Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int J Syst Evol Microbiol 61:1781–1785

    Article  CAS  PubMed  Google Scholar 

  • Kyne D, Bolin B, Chakraborty J, Grineski SE, Collins TW (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. Int J Environ Res Public Health 13(7):700. https://doi.org/10.3390/ijerph13070700

    Article  PubMed Central  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly P (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2(8):206–214

    Article  CAS  Google Scholar 

  • Lu L, Ren NQ, Zhao X et al (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336

    Article  CAS  Google Scholar 

  • Lu L, Xing D, Ren N, Logan BE (2012) Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol 124:68–76

    Article  CAS  PubMed  Google Scholar 

  • Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5(6):1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Malvankar NS et al (2015) Structural basis for metallic-like conductivity in microbial nanowires. MBio 6(2):e00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233

    Article  CAS  PubMed  Google Scholar 

  • Navanietha Krishnaraj R, Yu JS (2015) Systems biology approaches for microbial fuel cell applications. Bioenergy: Opportunities and Challenges. ISBN-10: 1771881097. Apple Academic Press, USA

    Chapter  Google Scholar 

  • Navanietha Krishnaraj R, Karthikeyan R, Berchmans S, Chandran S, Pal P (2013) Functionalisation of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of Microbial fuel cells. Electrochim Acta 112:465–472

    Article  CAS  Google Scholar 

  • Navanietha Krishnaraj R, Berchmans S, Pal P (2014) Symbiosis of photosynthetic microorganisms with non-photosynthetic ones for the conversion of cellulosic mass into electrical energy and pigments. Cellulose 21:2349–2355

    Article  CAS  Google Scholar 

  • Navanietha Krishnaraj R, Berchmans S, Pal P (2015) The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose 22:655–662

    Article  CAS  Google Scholar 

  • Niessen J, SchrÓ§der U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochem Commun 6(9):955–958

    Article  CAS  Google Scholar 

  • Pandit GG, Sahu Sk, Puranik VD (2011) Natural radionuclides from coal fired thermal power plants-estimation of atmospheric release and inhalation risk. Radioprotection 46:S173–S179

    Article  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15(3):1513–1524

    Article  Google Scholar 

  • Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, Logan BE (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106:89–94

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinam NK, Berchmans S, Salem D, Sani RK (2018) Rewiring the microbe-electrode interfaces with biologically reduced graphene oxide for improved bioelectrocatalysis. Bioresour Technol 256:195–200. https://doi.org/10.1016/j.biortech.2018.02.001

    Article  PubMed  CAS  Google Scholar 

  • Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806

    Article  CAS  PubMed  Google Scholar 

  • Reguera G et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58(3):617–622

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder U, Harnisch F (2013) From microbial bioelectrocatalysis to microbial bioelectrochemical systems. In: Alkire RC, Kolb DM, Kibler LA, Lipkowski J (eds) Electrocatalysis, vol 14. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527680436.ch4

    Chapter  Google Scholar 

  • Schuetz B et al (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75(24):7789–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj R, Vidhya S, Navanietha Krishnaraj R, Perumal S, Sundaramoorthy S, Maruthamuthu S, Ponmariappan S, Vijayan M (2016) Utilization of soak liquor in microbial fuel cell. Fuel 181:148–156

    Article  CAS  Google Scholar 

  • Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE (2017) Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour Technol 239:82–86

    Article  CAS  PubMed  Google Scholar 

  • Shrestha N, Chilkoor G, Vemuri B, Rathinam NK, Sani RK, Gadhamshetty VR (2018) Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.01.151

  • Sleutels TH, Ter Heijne A, Buisman CJ, Hamelers HV (2012) Bioelectrochemical systems: an outlook for practical applications. ChemSusChem 5(6):1012–1019. https://doi.org/10.1002/cssc.201100732

    Article  PubMed  CAS  Google Scholar 

  • Suraniti E, Tsujimura S, Durand F, Mano N (2013) Thermophilic biocathode with bilirubin oxidase from Bacillus pumilus. Electrochem Commun 26:41–44

    Article  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9. https://doi.org/10.1186/1475-2859-6-9

    Article  CAS  Google Scholar 

  • Vargas M et al (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo WQ, Xing DF et al (2014) Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. Int J Hydrogen Energ 39:19369–19375

    Article  CAS  Google Scholar 

  • Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yuan Y, Tang J, Zhou S (2017) Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28

    Article  CAS  PubMed  Google Scholar 

  • Zang GL, Sheng GP, Tong ZH, Liu XW, Teng SX, Li WW, Yu HQ (2010) Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ Sci Technol 44(7):2715–2720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged. The authors gratefully acknowledge the financial support provided by NASA EPSCoR (Award # 1736255). The authors also gratefully acknowledge Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology for the support. Funding from the Governor’s Office of Economic Development, South Dakota (number) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navanietha Krishnaraj Rathinam or Rajesh K. Sani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinam, N.K., Sani, R.K., Salem, D. (2018). Rewiring Extremophilic Electrocatalytic Processes for Production of Biofuels and Value-Added Compounds from Lignocellulosic Biomass. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_12

Download citation

Publish with us

Policies and ethics