Skip to main content

Multi-objective Topology Optimization of Electrical Machine Designs Using Evolutionary Algorithms with Discrete and Real Encodings

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10671))

Included in the following conference series:

  • 1143 Accesses

Abstract

We describe initial results obtained when applying different multi-objective evolutionary algorithms (MOEAs) to direct topology optimization (DTO) scenarios that are relevant in the field of electrical machine design. Our analysis is particularly concerned with investigating if the use of discrete or real-value encodings combined with a preference for a particular population initialization strategy can have a severe impact on the performance of MOEAs applied for DTO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bittner, F., Hahn, I.: Kriging-assisted multi-objective particle swarm optimization of permanent magnet synchronous machine for hybrid and electric cars. In: IEEE International Electric Machines and Drives Conference (IEMDC 2013), pp. 15–22. IEEE (2013)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Fleischer, M.: The measure of Pareto optima: applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_37

    Chapter  Google Scholar 

  5. Im, C.H., Jung, H.K., Kim, Y.J.: Hybrid genetic algorithm for electromagnetic topology optimization. IEEE Trans. Mag. 39(5), 2163–2169 (2003)

    Article  Google Scholar 

  6. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: IEEE Congress on Evolutionary Computation (CEC 2005), pp. 443–450. IEEE Press (2005)

    Google Scholar 

  7. Silber, S., Koppelstätter, W., Weidenholzer, G., Bramerdorfer, G.: Magopt-optimization tool for mechatronic components. In: Proceedings of the ISMB14-14th International Symposium on Magnetic Bearings (2014)

    Google Scholar 

  8. Silber, S., Bramerdorfer, G., Dorninger, A., Fohler, A., Gerstmayr, J., Koppelstätter, W., Reischl, D., Weidenholzer, G., Weitzhofer, S.: Coupled optimization in MagOpt. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 230(4), 291–299 (2016)

    Google Scholar 

  9. Storn, R., Price, K.V.: Differential evolution - a simple and effcient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  Google Scholar 

  10. Straßl, M.: Topologische Optimierung von Synchronreluktanzmaschinen. Master’s thesis, Johannes Kepler University Linz, Austria (2016)

    Google Scholar 

  11. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  12. Zăvoianu, A.C., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.: Hybridization of multi-objective evolutionary algorithms and artificial neural networks for optimizing the performance of electrical drives. Eng. Appl. Artif. Intell. 26(8), 1781–1794 (2013)

    Article  Google Scholar 

  13. Zăvoianu, A.C.: Enhanced evolutionary algorithms for solving computationally-intensive multi-objective optimization problems. Ph.D. thesis, Johannes Kepler University Linz, Austria (2015)

    Google Scholar 

  14. Zăvoianu, A.-C., Lughofer, E., Amrhein, W., Klement, E.P.: Efficient multi-objective optimization using 2-population cooperative coevolution. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8111, pp. 251–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8_32

    Chapter  Google Scholar 

  15. Zăvoianu, A.C., Lughofer, E., Bramerdorfer, G., Amrhein, W., Klement, E.P.: DECMO2: a robust hybrid and adaptive multi-objective evolutionary algorithm. Soft Comput. 19(12), 3551–3569 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the K-Project “Advanced Engineering Design Automation” (AEDA) that is financed under the COMET (COMpetence centers for Excellent Technologies) funding scheme of the Austrian Research Promotion Agency.

This work was partially conducted within LCM GmbH as a part of the COMET K2 program of the Austrian government. The COMET K2 projects at LCM are kindly supported by the Austrian and Upper Austrian governments and the participating scientific partners. The authors thank all involved partners for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru-Ciprian Zăvoianu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zăvoianu, AC., Bramerdorfer, G., Lughofer, E., Saminger-Platz, S. (2018). Multi-objective Topology Optimization of Electrical Machine Designs Using Evolutionary Algorithms with Discrete and Real Encodings. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74718-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74717-0

  • Online ISBN: 978-3-319-74718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics