Skip to main content

DetectionEvaluationJ: A Tool to Evaluate Object Detection Algorithms

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10672))

Included in the following conference series:

  • 1361 Accesses

Abstract

Object detection is an area of computer vision with applications in several contexts such as biomedicine and security; and it is currently growing thanks to the availability of datasets of images, and the use of deep learning techniques. In order to apply object detection algorithms is instrumental to know the quality of the regions detected by them; however, such an evaluation is usually performed using ad-hoc tools for each concrete problem; and, up to the best of our knowledge, it does not exist a simple and generic tool to conduct this task. In this paper, we present DetectionEvaluationJ an open-source tool that has been designed to evaluate the goodness of object detection algorithms in any context and using several metrics. This tool is independent from the programming language employed to implement the detection algorithms and also from the concrete problem where such algorithms are applied.

Partially supported by Ministerio de Industria, Economía y Competitividad, project MTM2014-54151-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso, A., et al.: AntibiogramJ: a tool for analysing images from disk diffusion tests. Comput. Methods Program. Biomed. 143, 159–169 (2017)

    Article  Google Scholar 

  2. Codella, N., et al.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 61(4), 5:1–5:15 (2017)

    Article  Google Scholar 

  3. Everingham, M., et al.: The PASCAL visual object classes challenge 2012 (VOC2012) results (2012). http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  4. Evjen, B., et al.: Professional XML. Wiley Publishing Inc., Hoboken (2007)

    Google Scholar 

  5. Ghasemian, F., et al.: An efficient method for automatic morphological abnormality detection from human sperm images. Comput. Methods Program. Biomed. 122(3), 409–420 (2015)

    Article  MathSciNet  Google Scholar 

  6. Glas, A.S., et al.: The diagnostic odds ratio: a single indicator of test performance. J. Clin. Epidemiol. 56, 1129–1135 (2003)

    Article  Google Scholar 

  7. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016. arXiv preprint arXiv:1605.01397 (2016)

  8. Heras, J., et al.: GelJ - a tool for analyzing DNA fingerprint gel images. BMC Bioinf. 16, 270 (2015)

    Article  Google Scholar 

  9. Heras, J., et al.: Surveying and benchmarking techniques to analyse DNA gel fingerprint images. Brief. Bioinf. 17(6), 912–925 (2015)

    Google Scholar 

  10. Huang, S.C., Chen, B.H.: Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems. IEEE Trans. Neural Netw. Learn. Syst. 24(12), 1920–1931 (2013)

    Article  Google Scholar 

  11. Kaehler, A., Bradski, G.: Learning OpenCV 3. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  12. Lasko, T.A., et al.: The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inf. 38(5), 404–415 (2005)

    Article  Google Scholar 

  13. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Google Scholar 

  14. Mata, G., et al.: SynapCountJ: a validated tool for analyzing synaptic densities in neurons. Commun. Comput. Inf. Sci. 690, 41–55 (2017)

    Google Scholar 

  15. MathWorks: Matlab version 9.0.0.341360 (R2016a). The MathWorks Inc., Natick, Massachusetts (2016)

    Google Scholar 

  16. Orlando, J.I., et al.: A discriminatively trained fully connected conditional random field model for blood blessed segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2015)

    Article  Google Scholar 

  17. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Int. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    Article  MathSciNet  Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint arXiv:1612.08242 (2016)

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  21. Shaoqing, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  22. Silva, J.S., et al.: Algorithm versus physicians variability evaluation in the cardiac chambers extraction. IEEE Trans. Inf. Technol. Biomed. 16(5), 835–841 (2012)

    Article  Google Scholar 

  23. Wolf, C., Jolion, J.M.: Object count/area graphs for the evaluation of object detection and segmentation algorithms. Int. J. Doc. Anal. Recogn. 8, 280–296 (2006)

    Article  Google Scholar 

  24. Zalama, E., et al.: Road crack detection using visual features extracted by gabor filters. Comput. Aided Civil Infrastruct. Eng. 29, 342–358 (2014)

    Article  Google Scholar 

  25. Zhai, M., et al.: Object detection in surveillance video from dense trajectories. In: 14th IAPR International Conference on Machine Vision Applications. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Heras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domínguez, C., García, M., Heras, J., Inés, A., Mata, E., Pascual, V. (2018). DetectionEvaluationJ: A Tool to Evaluate Object Detection Algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10672. Springer, Cham. https://doi.org/10.1007/978-3-319-74727-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74727-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74726-2

  • Online ISBN: 978-3-319-74727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics