Skip to main content

Targeting the Remote Control of Axial Chirality in N-(2-tert-butylphenyl)Succinimides via a Desymmetrization Strategy

  • Chapter
  • First Online:
New Organocatalytic Strategies for the Selective Synthesis of Centrally and Axially Chiral Molecules

Part of the book series: Springer Theses ((Springer Theses))

  • 465 Accesses

Abstract

There are molecules possessing stereogenic elements that are not chiral. These compounds are termed “meso” and do not manifest chirality because they possess a symmetry element of the second order (i.e. a symmetry plane)2 that makes their mirror images superimposable (Fig. 3.1).

Meso form of tartaric acid

Published as: References [1,2,3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further reading on desymmetrization see: [5, 6].

  2. 2.

    We have already talked in Sect. 2.1 about the issues arising from vinylogous reactivity where usually the stereogenic carbons are three or four bonds away from the activated site of the molecule therefore the challenge of forging a stereogenic element seven bonds away is even more formidable.

  3. 3.

    The absolute configuration was determined via single crystal XRD of the corresponding brominated product 149a and assigned by analogy to 137a.

  4. 4.

    See the experimental section for details.

  5. 5.

    A value of 31.9 kcal/mol corresponds roughly to a half life of epimerization of 1000 years.

References

  1. Di Iorio N, Righi P, Mazzanti A, Mancinelli M, Ciogli A, Bencivenni G (2014) J Am Chem Soc 10:250

    Google Scholar 

  2. Di Iorio N, Champavert F, Erice A, Righi P, Mazzanti A, Bencivenni G (2016) Tetrahedron (invited paper) 5191 (special issue “Methods for controlling axial chirality”)

    Google Scholar 

  3. Di Iorio N, Soprani L, Crotti S, Marotta E, Mazzanti A, Righi P, Bencivenni G (2017) Synthesis (invited paper) 1519

    Google Scholar 

  4. IUPAC (1997) Compendium of chemical terminology, 2nd ed. (the “Gold Book”). Oxford

    Google Scholar 

  5. Zeng XP, Cao ZY, Wang YH, Zhou F, Zhou J (2016) Chem Rev 7330

    Google Scholar 

  6. Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MSW, Dixon DJ (2016) Chem Soc Rev 5474

    Google Scholar 

  7. Yamagata ADG, Datta S, Jackson KE, Stegbauer L, Paton RS, Dixon DJ (2015) Angew Chem Int Ed 4899

    Google Scholar 

  8. Curran DP, Qi H, Geib SJ, DeMello NC (1994) J Am Chem Soc 3131

    Google Scholar 

  9. Bencivenni G, Galzerano P, Mazzanti A, Bartoli G, Melchiorre P (2010) Proc Natl Acad Sci 20:642

    Google Scholar 

  10. Still WC, Kahn M, Mitra AJ (1978) J Org Chem 43:2923

    Article  CAS  Google Scholar 

  11. Cassani C, Rapun RM, Arceo E, Bravo F, Melchiorre P (2013) Nat Protoc 325

    Google Scholar 

  12. Krafft ME, Wright JA (2006) Chem Commun 2977–2979

    Google Scholar 

  13. Wamg X, Reisinger CM (2008) B List J Am Chem Soc 130:6070–6071

    Article  Google Scholar 

  14. Nolwenn JAM (2006) B List J Am Chem Soc 128:13368–13369

    Article  Google Scholar 

  15. Bergman R, Magnusson G (1986) J Org Chem 51:212–217

    Article  CAS  Google Scholar 

  16. Hadjiarapoglou L, Klein I, Spitzner D, de Meijere A (1996) Synthesis 525–528

    Google Scholar 

  17. Neumann JJ, Rakshit S, Dröge T, Glorius F (2009) Angew Chem Int Ed 48:6892–6895

    Article  CAS  Google Scholar 

  18. Miller C, Hoyle C, Jönsson E (1998) PCT WO 98/54:134

    Google Scholar 

  19. Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M (2005) J Am Chem Soc 10:164

    Google Scholar 

  20. Zhu XL, Xu JH, Cheng DJ, Zhao LJ, Liu XY, Tan B (2014) Org Lett 2192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Iorio .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Iorio, N. (2018). Targeting the Remote Control of Axial Chirality in N-(2-tert-butylphenyl)Succinimides via a Desymmetrization Strategy. In: New Organocatalytic Strategies for the Selective Synthesis of Centrally and Axially Chiral Molecules. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-74914-3_3

Download citation

Publish with us

Policies and ethics