Skip to main content

Autonomous Flight Control and Precise Gestural Positioning of a Small Quadrotor

  • Chapter
  • First Online:
Learning Systems: From Theory to Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 756))

Abstract

Precise gestural positioning interface of a small quadrotor, presented here, is an advance continuation (ending stage) of intelligent autonomous flight control strategy. It is based on gestures and visual computing techniques and ensures intuitive way of prepositioning (fine movements in flight’s end point proximity) in absence of GPS signal or when human interaction is crucial. Therefore, a human operator could control the implementation of various maneuvers during the flight of the rotorcraft via specific gestures and body postures. A Parrot AR. Drone quadrotor and a Microsoft Kinect sensor have been used to implement and evaluate the proposed autonomous and semi-autonomous flight control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawatsuma, S., Fukushima, M., Okada, T.: Emergency response by robots to Fukushima Daiichi accident: summary and lessons learned. Ind. Robot 39(5), 428–435 (2012)

    Article  Google Scholar 

  2. Cragg, L., Hu, H.: Application of mobile agents to robust tele-operation of internet robots in nuclear decommissioning. In: Proceedings of the IEEE International Conference on Industrial Technology, Maribor, Slovenia, 10–12 Dec 2003, pp. 1214–1219 (2003)

    Google Scholar 

  3. Microdrones GmbH (2016). www.microdrones.com

  4. Ascending Technologies GmbH (2016). www.asctec.de

  5. Martinez, J.L., Pequeno‐Boter, A., Mandow, A., Garcia‐Cerezo, A., Morales, J.: Progress in mini‐helicopter tracking with a 3D laser range finder. In: Proceedings of the 16th IFAC Triennial World Congress, Prague, Check Republic, vol. 38, no. 1, pp. 648–653 (2005)

    Google Scholar 

  6. Roberts, J., Stirling, T., Zufferey, J.-C., Floreano, D.: 3-D relative positioning sensor for indoor flying robots. Auton. Robots 33(1/2), 1–16 (2012)

    Google Scholar 

  7. Roberts, J., Stirling, T., Zufferey J.‐C.: Quadrotor using minimal sensing for autonomous indoor flight. In: Proceedings of the European Micro Air Vehicle Conference and Flight Competition (EMAV2007), Toulouse, France, 17–21 Sept 2007, pp. 1–8 (2007)

    Google Scholar 

  8. Winkvist, S., Rushforth, E., Young, K.: Towards an autonomous indoor aerial inspection vehicle. Ind. Robot: Int. J. 40(3), 196–207 (2013)

    Article  Google Scholar 

  9. Wongphati, M., Osawa, H., Imai, M.: User-defined gestures for controlling primitive motions of an end effector. J. Adv. Robot. 29(4), 225–238 (2015). https://doi.org/10.1080/01691864.2014.978371

  10. Kılıboz, N., Güdükbay, U., Hand A.: Gesture recognition technique for human-computer interaction. J. Vis. Commun. Image R (2015). http://dx.doi.org/10.1016/j.jvcir.2015.01.015

  11. Bhuyan, M.K., MacDorman, K.F., Kar, M.K., Neog, D.R., Lovell, B.C., Gadde, P.: Hand pose recognition from monocular images by geometrical and texture analysis. J. Vis. Lang. Comput. (2015). http://dx.doi.org/10.1016/j.jvlc.2014.12.001

  12. Xu, D., Wu, X., Chen, YL., Xu, Y.: Online dynamic gesture recognition for human robot interaction. J. Intell. Robot Syst. 77, 583 (2015). https://doi.org/10.1007/s10846-014-0039-4

  13. Cao, X.Q., Liu, Z.Q.: Type-2 fuzzy topic models for human action recognition. IEEE Trans. Fuzzy Syst. 23(5), 1581–1593 (2015). https://doi.org/10.1109/tfuzz.2014.2370678

  14. Aly, A., Tapus, A.: Towards an intelligent system for generating an adapted verbal and nonverbal combined behavior in human–robot interaction. Auton. Robot 40, 193 (2016). https://doi.org/10.1007/s10514-015-9444-1

  15. Pavlovic, V.I., Sharma, R.T., Huang, S.: Visual interpretation of hand gestures for human–computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19, 677–695 (1997)

    Article  Google Scholar 

  16. Interaction with a Quadrotor via the Kinect, ETH Zurich. http://www.youtube.com/watch?v=A52FqfOi0Ek

  17. A.R. Drone web site. http://www.parrot.com/

  18. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education Inc., Prentice Hall (2005)

    Google Scholar 

  19. Shakev, N.G., Topalov, A.V., Kaynak, O.K., Shiev, K.B.: Comparative results on stabilization of the quad-rotor rotorcraft using bounded feedback controllers. J. Intell. Robot. Syst.: Theory Appl. 65(1–4), 389–408 (2012)

    Article  Google Scholar 

  20. Microsoft Kinect web site. http://www.xbox.com/en-US/xbox-360/accessories/kinect/

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided within the Ministry of Education and Science of Bulgaria Research Fund Projects: FNI I 02/6/2014 and FNI M 07/03/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola G. Shakev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shakev, N.G., Ahmed, S.A., Topalov, A.V., Popov, V.L., Shiev, K.B. (2018). Autonomous Flight Control and Precise Gestural Positioning of a Small Quadrotor. In: Sgurev, V., Piuri, V., Jotsov, V. (eds) Learning Systems: From Theory to Practice. Studies in Computational Intelligence, vol 756. Springer, Cham. https://doi.org/10.1007/978-3-319-75181-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75181-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75180-1

  • Online ISBN: 978-3-319-75181-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics