Skip to main content

Sympathoadrenal Reactivity to Stress as a Predictor of Cardiovascular Risk Factors

  • Chapter
  • First Online:
Prehypertension and Cardiometabolic Syndrome

Abstract

This study suggests that resting blood pressure (BP) reflects arterial catecholamine levels not only in the high BP range but also among subjects with normal BP. Moreover, cardiovascular and catecholamine reactivity to mental stress seems to be a marker of resting BP, indicating that subjects with higher BP may be more vulnerable to daily stress. The associations in this study were found in subjects unaware of their BP status, indicating other explanations than mere awareness behind the sympathoadrenal activation seen in young borderline hypertensives.

Catecholamines during mental stress contributed substantially and significantly to the prediction of future systolic BP independently of other well-known predictors. This is the first study showing that sympathetic nervous activity during mental stress predicts future BP, indicating a possible role in the development of essential hypertension independent of initial BP. The early stage of hypertension development characterized by a β-adrenergic hyperkinetic circulation with increased cardiac output may explain why reactivity to the mental stress (predominated by β-adrenergic responses) is a better predictor than the cold pressor test in young subjects.

Adrenaline response to mental stress was a negative predictor of future BMI, waist circumference, and triceps skinfold thickness after 18 years. These relationships were not found during the cold pressor test. As mental stress induces a more pronounced adrenaline release compared to the cold pressor test and exerts its effects mainly through activation of β-adrenergic receptors, these findings are in accordance with the growing amount of evidence indicating that reduced stimulation of β-receptors plays an important role in the development of obesity.

The noradrenaline response to the cold pressor test predicted fasting plasma glucose and HOMA-IR after 18 years’ follow-up. The association with HOMA-IR remained significant after adjusting for other risk factors. The superiority of the cold pressor test over the mental stress test may be explained by the cold pressor test’s ability to test α-adrenergic responses which reduce blood flow to skeletal muscles, indicating that insulin resistance may develop more readily in subjects liable to increased vasoconstriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rostrup M, Westheim A, Kjeldsen SE, Eide I. Cardiovascular reactivity, coronary risk factors, and sympathetic activity in young men. Hypertension. 1993;22(6):891–9.

    Article  CAS  PubMed  Google Scholar 

  2. Moan A, Nordby G, Rostrup M, Eide I, Kjeldsen SE. Insulin sensitivity, sympathetic activity, and cardiovascular reactivity in young men. Am J Hypertens. 1995;8(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  3. Fossum E, Hoieggen A, Moan A, Rostrup M, Nordby G, Kjeldsen SE. Relationship between insulin sensitivity and maximal forearm blood flow in young men. Hypertension. 1998;32(5):838–43.

    Article  CAS  PubMed  Google Scholar 

  4. Shields RW Jr. Functional anatomy of the autonomic nervous system. J Clin Neurophysiol. 1993;10(1):2–13.

    Article  PubMed  Google Scholar 

  5. Goldstein DS. Peripheral catecholaminergic systems. Stress, catecholamines, and cardiovascular disease. New York: Oxford University Press; 1995. p. 103–63.

    Google Scholar 

  6. Lipworth BJ. Clinical pharmacology of beta 3-adrenoceptors. Br J Clin Pharmacol. 1996;42(3):291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gauthier C, Seze-Goismier C, Rozec B. Beta 3-adrenoceptors in the cardiovascular system. Clin Hemorheol Microcirc. 2007;37(1–2):193–204.

    CAS  PubMed  Google Scholar 

  8. Young JB, Rosa RM, Landsberg L. Dissociation of sympathetic nervous system and adrenal medullary responses. Am J Phys. 1984;247(1 Pt 1):E35–40.

    CAS  Google Scholar 

  9. Levy RL, White PD, Stroud WD, Hillman CC. Transient tachycardia. Prognostic significance alone and in association with transient hypertension. JAMA. 1945;129(9):585–8.

    Article  Google Scholar 

  10. Levy RL, Hillman CC, Stroud WD, White PD. Transient hypertension. Its significance in terms of later development of sustained hypertension and cardiovascular-renal diseases. JAMA. 1944;126(13):829–33.

    Article  Google Scholar 

  11. Grassi G, Vailati S, Bertinieri G, et al. Heart rate as marker of sympathetic activity. J Hypertens. 1998;16(11):1635–9.

    Article  CAS  PubMed  Google Scholar 

  12. Seals DR, Dinenno FA. Collateral damage: cardiovascular consequences of chronic sympathetic activation with human aging. Am J Physiol Heart Circ Physiol. 2004;287(5):H1895–905.

    Article  CAS  PubMed  Google Scholar 

  13. Ernsberger P, Koletsky RJ, Friedman JE. Contribution of sympathetic nervous system overactivity to cardiovascular and metabolic disease. Rev Contemp Pharmacother. 1998;9(7):411–28.

    Google Scholar 

  14. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–16.

    Article  PubMed  Google Scholar 

  15. Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909–20.

    Article  CAS  PubMed  Google Scholar 

  16. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97.

    Article  Google Scholar 

  17. Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  18. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14(5):228–32.

    Article  CAS  PubMed  Google Scholar 

  19. Siani A, Strazzullo P. Tackling the genetic bases of metabolic syndrome: a realistic objective? Nutr Metab Cardiovasc Dis. 2006;16(5):309–12.

    Article  PubMed  Google Scholar 

  20. Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  21. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29(11):839–47.

    Article  CAS  PubMed  Google Scholar 

  22. Grassi G, Quarti-Trevano F, Seravalle G, Dell'Oro R. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2007;17(6):473–81.

    Article  CAS  PubMed  Google Scholar 

  23. Beevers G, Lip GYH, O’Brien E. ABC of hypertension: the pathophysiology of hypertension. BMJ. 2001;322(7291):912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kjeldsen SE, Flaaten B, Eide I, Helgeland A, Leren P. Evidence of increased peripheral catecholamine release in patients with long-standing, untreated essential hypertension. Scand J Clin Lab Invest. 1982;42(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  25. de Champlain J, Petrovich M, Gonzalez M, Lebeau R, Nadeau R. Abnormal cardiovascular reactivity in borderline and mild essential hypertension. Hypertension. 1991;17(4 Suppl):III22–8.

    PubMed  Google Scholar 

  26. Kjeldsen SE, Zweifler AJ, Petrin J, Weder AB, Julius S. Sympathetic nervous system involvement in essential hypertension: increased platelet noradrenaline coincides with decreased beta-adrenoreceptor responsiveness. Blood Press. 1994;3(3):164–71.

    Article  CAS  PubMed  Google Scholar 

  27. Reims HM, Fossum E, Hoieggen A, Moan A, Eide I, Kjeldsen SE. Adrenal medullary overactivity in lean, borderline hypertensive young men. Am J Hypertens. 2004;17(7):611–8.

    Article  CAS  PubMed  Google Scholar 

  28. Julius S, Majahalme S. The changing face of sympathetic overactivity in hypertension. Ann Med. 2000;32(5):365–70.

    Article  CAS  PubMed  Google Scholar 

  29. Lund-Johansen P. Hemodynamic concepts of hypertension: cardiac output versus peripheral vascular resistance. In: Birkenhager WH, Robertson JIS, Zanchetti A, editors. Handbook of hypertension, Hypertension in the twentieth century: concepts and achievements, vol. 22. Amsterdam: Elsevier; 2004. p. 151–72.

    Google Scholar 

  30. Rostrup M, Kjeldsen SE, Eide IK. Awareness of hypertension increases blood pressure and sympathetic responses to cold pressor test. Am J Hypertens. 1990;3(12Pt1):912–7.

    Article  CAS  PubMed  Google Scholar 

  31. Rostrup M, Mundal HH, Westheim A, Eide I. Awareness of high blood pressure increases arterial plasma catecholamines, platelet noradrenaline and adrenergic responses to mental stress. J Hypertens. 1991;9(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  32. Rostrup M, Ekeberg O. Awareness of high blood pressure influences on psychological and sympathetic responses. J Psychosom Res. 1992;36(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  33. Cowley AW Jr. The concept of autoregulation of total blood flow and its role in hypertension. Am J Med. 1980;68(6):906–16.

    Article  PubMed  Google Scholar 

  34. Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62(2):347–504.

    Article  CAS  PubMed  Google Scholar 

  35. Julius S. Transition from high cardiac output to elevated vascular resistance in hypertension. Am Heart J. 1988;116(2 Pt 2):600–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bohm RO, van Baak MA, van Hooff ME, Mooy J, Rahn KH. A long-term study of plasma catecholamine levels and plasma renin activity in borderline hypertension. J Hypertens. 1987;5(6):655–61.

    Article  CAS  PubMed  Google Scholar 

  37. Perini C, Muller FB, Buhler FR. Suppressed aggression accelerates early development of essential hypertension. J Hypertens. 1991;9(6):499–503.

    Article  CAS  PubMed  Google Scholar 

  38. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474–80.

    Article  CAS  PubMed  Google Scholar 

  39. Lefebvre PJ, Scheen AJ. Obesity: causes and new treatments. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S215–24.

    Article  CAS  PubMed  Google Scholar 

  40. Baak MA. The peripheral sympathetic nervous system in human obesity. Obes Rev. 2001;2(1):3–14.

    Article  PubMed  Google Scholar 

  41. Masuo K, Katsuya T, Fu Y, Rakugi H, Ogihara T, Tuck ML. Beta2- and beta3-adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years. Circulation. 2005;111(25):3429–34.

    Article  CAS  PubMed  Google Scholar 

  42. Eikelis N, Esler M. The neurobiology of human obesity. Exp Physiol. 2005;90(5):673–82.

    Article  PubMed  Google Scholar 

  43. Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2006;1083:129–52.

    Article  CAS  PubMed  Google Scholar 

  44. Tataranni PA, Young JB, Bogardus C, Ravussin E. A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res. 1997;5(4):341–7.

    Article  CAS  PubMed  Google Scholar 

  45. Young JB, Landsberg L. Stimulation of the sympathetic nervous system during sucrose feeding. Nature. 1977;269(5629):615–7.

    Article  CAS  PubMed  Google Scholar 

  46. Landsberg L. Role of the sympathetic adrenal system in the pathogenesis of the insulin resistance syndrome. Ann N Y Acad Sci. 1999;892:84–90.

    Article  CAS  PubMed  Google Scholar 

  47. Landsberg L. Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. QJM. 1986;61(3):1081–90.

    CAS  PubMed  Google Scholar 

  48. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities--the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334(6):374–81.

    Article  CAS  PubMed  Google Scholar 

  49. Julius S, Gudbrandsson T, Jamerson K, Tariq SS, Andersson O. The hemodynamic link between insulin resistance and hypertension. J Hypertens. 1991;9(11):983–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kaaja RJ, Poyhonen-Alho MK. Insulin resistance and sympathetic overactivity in women. J Hypertens. 2006;24(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  51. Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  52. Flaa A, Mundal HH, Eide IK, Kjeldsen SE, Rostrup M. Sympathetic activity and cardiovascular risk factors in young men in the low, normal, and high blood pressure ranges. Hypertension. 2006;47(3):396–402.

    Article  CAS  PubMed  Google Scholar 

  53. Flaa A, Kjeldsen SE, Eide IK, Rostrup M. Sympathoadrenal stress reactivity is a predictor of future blood pressure – an 18-year follow-up study. Hypertension. 2008;52(2):336–41.

    Article  CAS  PubMed  Google Scholar 

  54. Flaa A, Sandvik L, Kjeldsen SE, Eide IK, Rostrup M. Does sympathoadrenal activity predict changes in body fat? – An 18-year follow-up study. Am J Clin Nutr. 2008;87(6):1596–601.

    Article  CAS  PubMed  Google Scholar 

  55. Flaa A, Aksnes TA, Kjeldsen SE, Eide IK, Rostrup M. Increased sympathetic reactivity may predict insulin resistance – An 18-year follow-up study. Metabolism. 2008;57(10):1422–7.

    Article  CAS  PubMed  Google Scholar 

  56. Passon PG, Peuler JD. A simplified radioenzymatic assay for plasma norepinephrine and epinephrine. Anal Biochem. 1973;51:618–31.

    Article  CAS  PubMed  Google Scholar 

  57. Peuler JD, Johnson GA. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977;21(5):625–36.

    Article  CAS  PubMed  Google Scholar 

  58. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  59. Brod J, FENCL V, HEJL Z, JIRKA J. Circulatory changes underlying blood pressure elevation during acute emotional stress (mental arithmetic) in normotensive and hypertensive subjects. Clin Sci. 1959;18:269–79.

    CAS  PubMed  Google Scholar 

  60. Pickering TG, Gerin W. Area review: blood pressure reactivity: cardiovascular reactivity in the laboratory and the role of behavioral factors in hypertension: a critical review. Ann Behav Med. 1990;12(1):3–16.

    Article  Google Scholar 

  61. Hines EA, Brown GE. A standard stimulus for measuring vasomotor reactions: its application in the study of hypertension. Mayo Clin Proc. 1932;7:332–5.

    Google Scholar 

  62. Hohnloser SH, Klingenheben T. Basic autonomic tests. In: Malik M, editor. Clinical guide to cardiac autonomic tests. Dordrecht: Kleuwer Academic Publishers; 1998. p. 51–65.

    Chapter  Google Scholar 

  63. Mancia G, De Backer G, Dominiczak A, et al. Guidelines for the Management of Arterial Hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.

    Article  CAS  PubMed  Google Scholar 

  64. Eliasson K, Hjemdahl P, Kahan T. Circulatory and sympatho-adrenal responses to stress in borderline and established hypertension. J Hypertens. 1983;1(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  65. Swain A, Suls J. Reproducibility of blood pressure and heart rate reactivity: a meta-analysis. Psychophysiology. 1996;33(2):162–74.

    Article  CAS  PubMed  Google Scholar 

  66. Kamarck TW, Lovallo WR. Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom Med. 2003;65(1):9–21.

    Article  PubMed  Google Scholar 

  67. Floras JS, Hassan MO, Jones JV, Sleight P. Pressor responses to laboratory stresses and daytime blood pressure variability. J Hypertens. 1987;5(6):715–9.

    Article  CAS  PubMed  Google Scholar 

  68. Southard DR, Coates TJ, Kolodner K, Parker FC, Padgett NE, Kennedy HL. Relationship between mood and blood pressure in the natural environment: an adolescent population. Health Psychol. 1986;5(5):469–80.

    Article  CAS  PubMed  Google Scholar 

  69. Van Egeren LF, Sparrow AW. Laboratory stress testing to assess real-life cardiovascular reactivity. Psychosom Med. 1989;51(1):1–9.

    Article  PubMed  Google Scholar 

  70. Schneider RH, Julius S, Karunas R. Ambulatory blood pressure monitoring and laboratory reactivity in type A behavior and components. Psychosom Med. 1989;51(3):290–305.

    Article  CAS  PubMed  Google Scholar 

  71. van Doornen LJ, van Blokland RW. The relationship between cardiovascular and catecholamine reactions to laboratory and real-life stress. Psychophysiology. 1992;29(2):173–81.

    Article  PubMed  Google Scholar 

  72. Gehrking JA, Hines SM, Benrud-Larson LM, Opher-Gehrking TL, Low PA. What is the minimum duration of head-up tilt necessary to detect orthostatic hypotension? Clin Auton Res. 2005;15(2):71–5.

    Article  PubMed  Google Scholar 

  73. Grassi G, Seravalle G, Bolla G, et al. Heart rate as a sympathetic marker during acute adrenergic challenge. J Hypertens. 2008;26(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  74. Kjeldsen SE, Schork NJ, Leren P, Eide IK. Arterial plasma norepinephrine correlates to blood pressure in middle-aged men with sustained essential hypertension. Am Heart J. 1989;118(4):775–81.

    Article  CAS  PubMed  Google Scholar 

  75. James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S–33S.

    Article  PubMed  Google Scholar 

  76. Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition. 2003;19(5):457–66.

    Article  PubMed  Google Scholar 

  77. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9.

    Article  PubMed  Google Scholar 

  78. Clausen JO, Ibsen H, Dige-Petersen H, Borch-Johnsen K, Pedersen O. The importance of adrenaline, insulin and insulin sensitivity as determinants for blood pressure in young Danes. J Hypertens. 1995;13(5):499–505.

    Article  CAS  PubMed  Google Scholar 

  79. Julius S. The evidence for a pathophysiologic significance of the sympathetic overactivity in hypertension. Clin Exp Hypertens. 1996;18(3–4):305–21.

    Article  CAS  PubMed  Google Scholar 

  80. Mancia G. Bjorn Folkow Award Lecture. The sympathetic nervous system in hypertension. J Hypertens. 1997;15(12 Pt 2):1553–65.

    Article  CAS  PubMed  Google Scholar 

  81. Fossum E, Hoieggen A, Reims HM, et al. High screening blood pressure is related to sympathetic nervous system activity and insulin resistance in healthy young men. Blood Press. 2004;13(2):89–94.

    Article  PubMed  Google Scholar 

  82. Flaa A, Ekeberg O, Kjeldsen SE, Rostrup M. Personality may influence reactivity to stress. Biopsychosoc Med. 2007;1:5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure study. JAMA. 1990;264(3):354–8.

    Article  CAS  PubMed  Google Scholar 

  84. LeBlanc J, Cote J, Jobin M, Labrie A. Plasma catecholamines and cardiovascular responses to cold and mental activity. J Appl Physiol. 1979;47(6):1207–11.

    Article  CAS  PubMed  Google Scholar 

  85. Georgiades A, de Faire U, Lemne C. Clinical prediction of normotension in borderline hypertensive men--a 10 year study. J Hypertens. 2004;22(3):471–8.

    Article  CAS  PubMed  Google Scholar 

  86. Jokiniitty JM, Majahalme SK, Kahonen MA, Tuomisto MT, Turjanmaa VM. Prediction of blood pressure level and need for antihypertensive medication: 10 years of follow-up. J Hypertens. 2001;19(7):1193–201.

    Article  CAS  PubMed  Google Scholar 

  87. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206–52.

    Article  CAS  PubMed  Google Scholar 

  88. Thomas CB, Duszynski KR. Blood pressure levels in young adulthood as predictors of hypertension and the fate of the cold pressor test. Johns Hopkins Med J. 1982;151(3):93–100.

    CAS  PubMed  Google Scholar 

  89. Lovallo WR, Gerin W. Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosom Med. 2003;65(1):36–45.

    Article  PubMed  Google Scholar 

  90. Gudmundsdottir H, Strand A, Hoieggen A, et al. Do screening blood pressure and plasma catecholamines predict development of hypertension? Twenty-year follow-up of middle-aged men. Blood Press. 2008;17(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  91. Egan BM. Neurohumoral, hemodynamic and microvascular changes as mechanisms of insulin resistance in hypertension: a provocative but partial picture. Int J Obes. 1991;15(Suppl 2):133–9.

    CAS  PubMed  Google Scholar 

  92. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(4 Pt 2):724–8.

    Article  CAS  PubMed  Google Scholar 

  93. Treiber FA, Kamarck T, Schneiderman N, Sheffield D, Kapuku G, Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom Med. 2003;65(1):46–62.

    Article  PubMed  Google Scholar 

  94. Julius S, Li Y, Brant D, Krause L, Buda AJ. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension. 1989;13(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  95. Anderson DE, Kearns WD, Better WE. Progressive hypertension in dogs by avoidance conditioning and saline infusion. Hypertension. 1983;5(3):286–91.

    Article  CAS  PubMed  Google Scholar 

  96. Folkow B. Pathophysiology of hypertension: differences between young and elderly. J Hypertens Suppl. 1993;11(4):S21–4.

    CAS  PubMed  Google Scholar 

  97. Rahn KH, Barenbrock M, Hausberg M. The sympathetic nervous system in the pathogenesis of hypertension. J Hypertens Suppl. 1999;17(3):S11–4.

    Article  CAS  PubMed  Google Scholar 

  98. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ross AE, Flaa A, Hoieggen A, Reims H, Eide IK, Kjeldsen SE. Gender specific sympathetic and hemorrheological responses to mental stress in healthy young subjects. Scand Cardiovasc J. 2001;35(5):307–12.

    Article  CAS  PubMed  Google Scholar 

  100. Reims HM, Sevre K, Hoieggen A, Fossum E, Eide I, Kjeldsen SE. Blood viscosity: effects of mental stress and relations to autonomic nervous system function and insulin sensitivity. Blood Press. 2005;14(3):159–69.

    Article  CAS  PubMed  Google Scholar 

  101. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003;177(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  102. Lohse MJ. Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta. 1993;1179(2):171–88.

    Article  CAS  PubMed  Google Scholar 

  103. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 1990;4(11):2881–9.

    Article  CAS  PubMed  Google Scholar 

  104. Julius S, Valentini M, Palatini P. Overweight and hypertension: A 2-way street? Hypertension. 2000;35(3):807–13.

    Article  CAS  PubMed  Google Scholar 

  105. Seals DR, Bell C. Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes. 2004;53(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  106. Shibao C, Gamboa A, Diedrich A, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  107. Reims HM, Hoieggen A, Fossum E, Rostrup M, Eide I, Kjeldsen SE. Glucose disposal rates calculated from 60- to 90-minute isoglycemic hyperinsulinemic glucose clamp correlate with cardiovascular risk factors in borderline hypertensive young men. Metabolism. 2001;50(10):1175–80.

    Article  CAS  PubMed  Google Scholar 

  108. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.

    Article  CAS  PubMed  Google Scholar 

  109. Natali A, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini E. Impaired insulin action on skeletal muscle metabolism in essential hypertension. Hypertension. 1991;17(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  110. Grassi G, Dell'Oro R, Facchini A, Quarti TF, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22(12):2363–9.

    Article  CAS  PubMed  Google Scholar 

  111. Hamburg S, Hendler R, Sherwin RS. Influence of small increments of epinephrine on glucose tolerance in normal humans. Ann Intern Med. 1980;93(4):566–8.

    Article  CAS  PubMed  Google Scholar 

  112. Zeman RJ, Ludemann R, Easton TG, Etlinger JD. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. Am J Phys. 1988;254(6 Pt 1):E726–32.

    CAS  Google Scholar 

  113. Cohn JN. Relationship of plasma volume changes to resistance and capacitance vessel effects of sympathomimetic amines and angiotensin in man. Clin Sci. 1966;30(2):267–78.

    CAS  PubMed  Google Scholar 

  114. Hoieggen A, Fossum E, Moan A, Enger E, Kjeldsen SE. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens. 1998;16(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  115. Hoieggen A, Fossum E, Nesbitt SD, Palmieri V, Kjeldsen SE. Blood viscosity, plasma adrenaline and fasting insulin in hypertensive patients with left ventricular hypertrophy. ICARUS, a LIFE Substudy. Insulin CARotids US Scandinavica. Blood Press. 2000;9(2–3):83–90.

    Article  CAS  PubMed  Google Scholar 

  116. Hassellund SS, Flaa A, Sandvik L, Kjeldsen SE, Rostrup M. Long-term stability of cardiovascular and catecholamine responses to stress tests: an 18-year follow-up study. Hypertension. 2010;55:131–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is based on the PhD thesis that Arnljot Flaa, MD, defended at the University of Oslo in 2009. Though shortened the structure of the thesis has been maintained.

Conflict of interest: S.E. Kjeldsen reports modest honoraria from ABDiiBRAHiM, Bayer, MSD and Takeda. The other authors report no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sverre E. Kjeldsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flaa, A., Rostrup, M., Kjeldsen, S.E., Eide, I. (2019). Sympathoadrenal Reactivity to Stress as a Predictor of Cardiovascular Risk Factors. In: Zimlichman, R., Julius, S., Mancia, G. (eds) Prehypertension and Cardiometabolic Syndrome. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-75310-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75310-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75309-6

  • Online ISBN: 978-3-319-75310-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics