Skip to main content

Developmental Transitions to Fruiting in Red Raspberry

  • Chapter
  • First Online:
The Genomes of Rosaceous Berries and Their Wild Relatives

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Climate change is impacting soft fruit crops. In raspberry, uneven bud break, greater variability in time to fruit ripening and crumbly fruit are already in evidence. Understanding the developmental process and how the environment impacts will be crucial in sustaining the industry in this changing climate against a background of biotic stresses. This chapter reviews regulation of processes leading to flowering time and fertilisation, developing fruit, ripening, colour, flavour and size. Recent developments of genomic and transcriptome tools which will have a significant role in breeding of the next generation of raspberry fruit are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Keizer LCP, Van den Broeck HC, Blanco-Portales R, Munoz-Blanco J, Bois G, Smit P De, Vos RCH, O’Connell AP (2002) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol 129:1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amano T, Smithers RJ, Sparke TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes Proc R Soc B-Biol Sci 277:2451–2457

    Article  PubMed  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911–921

    Google Scholar 

  • Beekwilder J, Jonker H, Meesters P, Hall RD, van der Meer IM, de Vos CHR (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 53:3313–3320

    Article  CAS  PubMed  Google Scholar 

  • Brennan RM, Graham J (2009) Improving fruit quality in Rubus and Ribes through breeding (Invited review). Funct Plant Sci Biotechnol 3:22–29

    Google Scholar 

  • Burton-Freeman BM, Sandhu AK, Edirisinghe I (2016) Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr 7:44–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushakra JM et al (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126(3):847–865

    Article  CAS  PubMed  Google Scholar 

  • Cao et al (2016) Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities. Sci Rep 6:27835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaneda-Ovando A, Pacheco-Hernandez MD, Paez-Hermandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  • Castellarin SD, Di Gaspero SD (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:6. https://doi.org/10.1186/1471-2229-7-46

    Article  CAS  Google Scholar 

  • Chao WS (2002) Contemporary methods to investigate seed and bud dormancy. Weed Sci 50:215–226

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2016) F1000Res. 2016 Catalysts of plant cell wall loosening. Version 1. F1000Res. 5: F1000 Faculty Rev-119

    Google Scholar 

  • Costa G, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G, Ziosi V (2008) A non-destructive index (IAD) to characterize ripening evolution in fruit. HortScience 43:1129

    Google Scholar 

  • Daubeny HA, Crandall PC, Eaton GW (1967) Crumbliness in the red raspberry with special reference to the ‘Sumner’ variety. Proc Am Soc Hortic Sci 9:224–230

    Google Scholar 

  • Daubeny HA, Stacesmith R, Freeman JA (1978) Occurrence and effects of raspberry bushy dwarf virus in red raspberry. HortScience 13:358

    Google Scholar 

  • Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis FG (1994) Dormancy: what we know (and don’t know). HortScience 11:1249–1255

    Google Scholar 

  • Dobson P, Graham J, Stewart D, Brennan R, Hackett C, McDougall GJ (2012) Over season analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Agric Food Chem 60:5360–5366

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, Sherif S, El Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release. HortScience 32:623–629

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  PubMed  Google Scholar 

  • Fornara et al (2010) Snapshot control of flowering in Arabidopsis. Cell 141. https://doi.org/10.1016/j.cell.2010.04.024

  • Fortes AM, Teixeira RT, Agudelo-Romero P (2015) Complex interplay of hormonal signals during grape berry ripening. Molecules 20:9326–9343

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Lui JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fuchigami LH, Wisniewski ME (1997) Quantifying bud dormancy: physiological approaches. HortScience 32:618–623

    Google Scholar 

  • Fuentes L, Monsalve L, Morales-Quintana L, Valdenegro M, Martinez JP, Defilippi BG, Gonzalez-Aguero M (2015) Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus). J Plant Physiol 179:100–105

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotame T, Andersen L, Petersen KK, Pedersen HL, Ottosen CO, Graham J (2013) Chlorophyll fluorescence and flowering behaviour of annual-fruiting raspberry cultivars under elevated temperature regimes. EJHS 78:193–202

    Google Scholar 

  • Graham J, Jennings SN (2009) Raspberry breeding. In: Jain SM, Priyadarshan M (eds). Breeding plantation tree crops: temperate species. IBH & Science Publication Inc, Oxford, UK, Chapter 7, pp 233–248

    Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgensen L, Hackett CA, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Smith K, Tierney I, MacKenzie K, Hackett C (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botyritis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009a) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Woodhead M, Smith K, Russell JR, Marshall B, Ramsay G, Squire GR (2009b) New insight into wild red raspberry populations using simple sequence repeat markers. J Am Soc Hortic Sci 134:109–119

    Google Scholar 

  • Hancock RD, Morris WL, Ducreux LJM, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell Environ 37:439–450

    Article  CAS  Google Scholar 

  • Harrison RE, Brennan RM, Morel S, Hunter EA, Muior DD (1999) Genotypic, environmental and processing effects on the sensory character of Rubus and Ribes. Acta Hortic 505:23–31

    Google Scholar 

  • Heide OM, Sonsteby A (2011) Physiology of flowering and dormancy regulation in annual- and biennial-fruiting red raspberry (Rubus idaeus L.)—a review. J Hortic Sci Biotechnol 86:433–442

    Article  Google Scholar 

  • Iannetta PPM et al (1999) The role of ethylene and cell wall modifying enzymes in raspberry (Rubus idaeus) fruit ripening. Physiol Plant 105(2):338–347

    Article  CAS  Google Scholar 

  • Iannetta PPM, Wyman M, Neelam A, Jones C, Taylor M, Davies HV, Sexton R (2000) A causal role for ethylene and endo-beta-1,4-glucanase in the abscission of red-raspberry (Rubus idaeus) drupelets. Physiol Plant 110:535–543

    Article  CAS  Google Scholar 

  • Jaakola L (2007) Flavonoid biosynthesis. Comp Biochem Physiol A-Mol Integr Physiol 146:S244–S244

    Article  Google Scholar 

  • Jennings DL (1967a) Balanced lethals and polymorphism in Rubus idaeus. Heredity 465–479

    Article  Google Scholar 

  • Jennings DL (1967b) Observations on some instances of partial sterility in red raspberry cultivars. Hortic Res 7:116–122

    Google Scholar 

  • Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, London, p 145

    Google Scholar 

  • Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett CA, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634

    Article  CAS  PubMed  Google Scholar 

  • Keep E (1964) Sepaloidy in red raspberry Rubus idaeus L. Can J Genet Cytol 6:52

    Article  Google Scholar 

  • Lang GA, Early JD, Martin GC (1987) Endo-, para- and eco-dormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Larsen M, Poll L, Callesen O, Lewis M (1991) Relations between the content of aroma compounds and the sensory evaluation of 10 raspberry varieties (Rubus-idaeus L). Acta Agric Scand 41:447–454

    Article  CAS  Google Scholar 

  • Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of Short Vegetative Phase (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta-Gene Struct Exp 1769:455–461

    Article  CAS  Google Scholar 

  • Lijavetzky D, Ruiz-Garcia L, Cabezas JA, De Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  CAS  PubMed  Google Scholar 

  • MÃ¥ge F (1975) Dormancy in buds of red raspberry. Meldinger fra NorgeLandbruskshogskole 54:1–25

    Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Mazur SP, Nes A, Wold AB, Remberg SF, Aaby K (2014) Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem 160:233–240

    Article  CAS  PubMed  Google Scholar 

  • Mazzitelli L et al (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045

    Article  CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 17(4):79

    Google Scholar 

  • McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J (2010) Genetic and environmental effects influencing fruit colour. Theor Appl Genet 121:611–627

    Article  CAS  PubMed  Google Scholar 

  • McDougall G, Stewart D. (2012) Berries and Health: A review of the evidence. Food Health Innovation Serv

    Google Scholar 

  • McKenzie K, Williamson S, Smith K, Woodhead M, McCallum S, Graham J (2015) Characterisation of the Gene H region in red raspberry: exploring its role in cane morphology, disease resistance, and timing of fruit ripening. J Hortic 2:3

    Google Scholar 

  • Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, Garcia-Caparros N, Moyano-Canete E, Caballero-Repullo JL, Munoz-Blanco J, Rodriguez-Franco A (2016) Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics 16:671–692

    Article  CAS  Google Scholar 

  • Mezetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4

    Article  Google Scholar 

  • Miret JA, Munné-Bosch S (2016) Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chem 203:216–223

    Article  CAS  PubMed  Google Scholar 

  • Molina-Bravo R, Fernandez GE, Sosinski BR (2014) Quantitative trait locus analysis of tolerance to temperature fluctuations in winter, fruit characteristics, flower color, and prickle-free canes in raspberry. Mol Breeding 33:267–280

    Article  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2002) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  Google Scholar 

  • Murant AF, Chambers J, Jones AT (1974) Spread of raspberry bushy dwarf virus by pollination, its association with crumbly fruit, and problems of control. Ann Appl Biol 77:271–281

    Article  Google Scholar 

  • Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E, Manson D (2002) Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol Breeding 9:217–229

    Article  CAS  Google Scholar 

  • Nwankno AJ, Gordon SL, Verrall SR, Brennan RM, Hancock RD (2012) Treatment with fungicides influences phytochemical quality of blackcurrant juice. Annal Appl Biol 160:86–96. https://doi.org/10.1111/j.1744-7348.2011.00523.x

    Article  CAS  Google Scholar 

  • Olsen JE (2003) Molecular and physiological mechanisms of bud dormancy regulation. Acta Hortic 618:437–453

    Article  CAS  Google Scholar 

  • Osorio S, Alba R, Damasceno CMB, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JKC, Fei ZJ, Giovannoni JJ, Fernie AR (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425. https://doi.org/10.1104/pp.111.175463

  • Pandolfini T, Molensini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329

    Article  CAS  PubMed  Google Scholar 

  • Patterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J (2013) Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48. https://doi.org/10.1007/s00122-012-1957-9

    Article  CAS  PubMed  Google Scholar 

  • Perkins-Veazie P, Nonnecke G (1992) Physiological changes during the ripening of raspberry fruit. HortScience 27:331–333

    CAS  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ 35:1742–1755

    Article  CAS  Google Scholar 

  • Rallo L, Martin GC (1991) The role of chilling in releasing olive floral buds from dormancy. J Am Soc Hortic Sci 116:1058–1062

    Google Scholar 

  • Rao AV, Snyder DM (2010) Raspberries and human health: a review. J Agric Food Chem 58:3871–3883

    Article  CAS  PubMed  Google Scholar 

  • Saez A et al (2014) Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J Appl Ecol 51(6):1603–1612

    Article  Google Scholar 

  • Santiago-Domenech N, Jimenez-Bemudez S, Matas AJ, Rose JKC, Munoz-Blanco J, Mercado JA, Quesada MA (2008) Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit. J Exp Bot 59:2769–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe WM, Mills JJ (1981) Hormones and parthenocarpic fruit set. A literature survey (temperate, subtropical and tropical fruis and vegetables). Hortic Abs 51:661–698

    Google Scholar 

  • Seo E, Yu J, Ryu KH, Lee MM, Lee I (2011) WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol 156:1867–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton R, Palmer JM, Whyte NA, Littlejohns S (1997) Cellulase, fruit softening and abscission in red raspberry Rubus idaeus L cv Glen Clova. Ann Bot 80:371–376

    Article  CAS  Google Scholar 

  • Simon et al (2015) Evolution of CONSTANS regulation and function after gene duplication produced a photoperiodic flowering switch in the brassicaceae. Mol Biol Evol 32:2284–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson C, Cullen D, Hackett C, Smith K, Hallett P, McNicol J, Woodhead M, Graham J (2016) Mapping and expression of genes associated with raspberry fruit ripening and softening. TAG

    Article  CAS  PubMed  Google Scholar 

  • Song et al (2012) Vernalisation-a cold induced epigenetic switch. J Cell Sci 125:3723

    Article  CAS  PubMed  Google Scholar 

  • Sonsteby A, Heide OM (2011) Contrasting environmental flowering responses in annual and biennial raspberries—a mini-review. Acta Hortic 926:221–228

    Google Scholar 

  • Sonsteby A, Heide OM (2014) Cold tolerance and chilling requirements for breaking bud dormancy in plants and severed shoots of raspberry (Rubus idaeus L.). J Hortic Sci Biotechnol 89:631–638

    Article  Google Scholar 

  • Stewart D, Iannetta PP, Davies HV (2001) Ripening-related changes in raspberry cell wall composition and structure. Phytochemistry 56:423–428

    Article  CAS  PubMed  Google Scholar 

  • Stewart D, McDougall GJ, Sungurtas J, Verrall SR, Graham J, Martinussen I (2007) Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement. Mol Nutr Food Res 51:645–651

    Article  CAS  PubMed  Google Scholar 

  • Sweetman C, Wong DCJ, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13. https://doi.org/10.1186/1471-2164-13-691

  • Tadiello A, Ziosi V, Negri AS, Noferini M, Fiori G, Busatto N, Espen L, Costa G, Trainotti L (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topham PB (1970) Histology of seed development in diploid and tetraploid raspberries (Rubus-idaeus L). Ann Bot 34:123

    Article  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  CAS  PubMed  Google Scholar 

  • Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong, TMD, Sheldon J Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang Ni, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell ALT, Harding, SE, Craigon J, Rose JKC, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB (2016) Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34:950–952

    Article  CAS  PubMed  Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547

    Article  CAS  PubMed  Google Scholar 

  • Vicente AR, Ortugno C, Powell ALT, Greve LC, Labavitch JM (2007) Temporal sequence of cell wall disassembly events in developing fruits. 1. Analysis of raspberry (Rubus idaeus). J Agric Food Chem 55:4119–4124

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    PubMed  CAS  Google Scholar 

  • Walker PG, Gordon SL, Brennan RM, Hancock RD (2006) High-throughput monolithic HPLC method for rapid vitamin C phenotyping of berry fruit. Phytochem Anal 17:284–290

    Article  CAS  PubMed  Google Scholar 

  • Wang (2014) Regulation of flowering time by the miR156 mediated age pathway J Exp Bot 64:4723–4730

    Article  CAS  PubMed  Google Scholar 

  • Weber CA, Perkins-Veazie P, Moore PP, Howard L (2008) Variability of antioxidant content in raspberry germplasm. Acta Hortic 777:493–497

    Article  CAS  Google Scholar 

  • White JM, Wainwright H, Ireland CR (1998) Interaction of endodormancy and paradormancy in raspberry (Rubus idaeus L.). Ann Appl Biol 132:487–495

    Article  Google Scholar 

  • Wu et al (2009) The Sequential Action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zait D (2012) Flavour quality factors and its regulation in red raspberry (Rubus idaeus). PhD thesis, University of Strathclyde, Glasgow

    Google Scholar 

  • Zheng D, Hrazdina G (2010) Cloning and characterization of an expansin gene, RiEXP1, and a 1-aminocyclopropane-1-carboxylic acid synthase gene, RiACS1 in ripening fruit of raspberry (Rubus idaeus L.). Plant Sci 179:133–139

    Article  CAS  Google Scholar 

  • Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224. https://doi.org/10.1104/pp.111.180950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 11:437–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graham, J., Simpson, C. (2018). Developmental Transitions to Fruiting in Red Raspberry. In: Hytönen, T., Graham, J., Harrison, R. (eds) The Genomes of Rosaceous Berries and Their Wild Relatives. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-76020-9_14

Download citation

Publish with us

Policies and ethics