Skip to main content

Mechanical Machining

  • Chapter
  • First Online:
Advanced Machining and Manufacturing Processes

Abstract

The typical examples of mechanical machining are ultrasonic machining and water jet machining. Mechanical abrasion is the main mechanism for the material removal in case of ultrasonic machining whereas in case of water jet machining it is the cutting action of the fluid jet. The medium under which the machining takes place is abrasive slurry in case of ultrasonic machining while the water jet machining is performed in the presence of fluid. The present chapter describes the different mechanical nontraditional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.I. Babitsky, A.V. Mitrofanov, V.V. Silverschmidt, Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42, 81–86 (2004)

    Article  Google Scholar 

  • L.A. Balamuth, Ultrasonic assistance to conventional metal removal. Ultrasonics 4, 125–130 (1966)

    Article  Google Scholar 

  • M.M. Barash, D. Watanapongse, On the effect of ambient pressure on the rate of material removal in ultrasonic machining. Int. J. Mech. Sci. 12, 775–779 (1970)

    Article  Google Scholar 

  • G.F. Benedict, Non-Traditional Manufacturing Processes (Marcel Dekker Inc., New York, 1987), pp. 67–86

    Google Scholar 

  • T.J. Bulat, Micro-Sonics in Industry: Ultrasonic Cleaning, Bendix and Life Supports Division Publication, USA, 120.10.153: 13 (1974)

    Google Scholar 

  • S. Chang, G.M. Bone, Burr size reduction in drilling by ultrasonic assistance. Robot. Comput. Integr. Manuf. 120, 442–450 (2005)

    Article  Google Scholar 

  • F.L. Chen, E. Siores, The effect of cutting jet variation on striation formation in abrasive water jet cutting. Int. J. Mach. Tools Manuf 41(10), 1479–1486 (2001)

    Article  Google Scholar 

  • G.S. Choi, G.H. Choi, Process analysis and monitoring in abrasive water jet machining of alumina ceramics. Int. J. Mach. Tools Manuf. 37(3), 295–307 (1997)

    Article  Google Scholar 

  • N.H. Cook, Manufacturing Analysis (Addison-Wesley, New York, 1966), pp. 133–148

    Google Scholar 

  • W.L. Cong, Z.J. Pei, C. Treadwell, Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics 54(6), 1594–1602 (2014)

    Article  Google Scholar 

  • J. Deng, T. Lee, Ultrasonic machining of alumina based ceramic composites. J. Eur. Ceram. Soc. 22(8), 1235–1241 (2002)

    Article  Google Scholar 

  • F.T. Farago, Abrasives methods engineering. Indus. Press 2, 480–481 (1980)

    Google Scholar 

  • F. Farzin-Nia, T. Sterrett, Effect of machining on fracture toughness of corundum. J. Mater. Sci. 25(5), 2527–2531 (1990)

    Article  Google Scholar 

  • J.R. Frederick, Ultrasonic Engineering (Wiley, New York, 1965), pp. 32–45

    Google Scholar 

  • G. Fowler, I.R. Pashby, P.H. Shipway, The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266(7), 613–620 (2009)

    Article  Google Scholar 

  • R. Gilmore, Ultrasonic machining and orbital abrasion techniques. SME Technical Paper (series) AIR, NM89–419: 1–20 ((1989

    Google Scholar 

  • D. Goetze, Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in Ketos Tool Steel. J. Acoust. Soc. America 28(6), 1033–1045 (1956)

    Article  Google Scholar 

  • K.F. Graff, Macrosonics in industry: ultrasonic machining. Ultrasonics 13, 103–109 (1975)

    Article  Google Scholar 

  • A. Gupta, Performance optimization of abrasive fluid jet for completion and stimulation of oil and gas wells. J. Energy Res. Technol. 134(2), 021001 (2012)

    Article  Google Scholar 

  • M. Hashish, A modeling study of metal cutting with abrasive waterjets. J. Eng. Mater. Technol. 106(1), 88–100 (1984)

    Article  Google Scholar 

  • M. Hashish, Visualization of the abrasive-waterjet cutting process. Exp. Mech. 28(2),159–169 15 (1988)

    Google Scholar 

  • M. Hashish, A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 111(2), 154–162 16 (1989a)

    Article  Google Scholar 

  • M. Hashish, Pressure effects in abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 111(3), 221–228 (1989b)

    Article  MathSciNet  Google Scholar 

  • M. Hashish, Characteristics of surfaces machined with abrasive-waterjets. J. Eng. Mater. Technol. 113(3), 354–362 (1991a)

    Article  Google Scholar 

  • M. Hashish, Optimization factors in abrasive-waterjet machining. J. Eng. İnd. 113(1), 29–37 (1991b)

    Google Scholar 

  • M. Hashish, Effect of abrasive waterjet parameters on volume removal trends in turning. J. Eng. İnd. 117, 475 (1995)

    Google Scholar 

  • L.M. Hlaváč, I.M. Hlaváčová, L. Gembalová, J. Kaličinský, S. Fabian, J. Měšťánek, V. Mádr, Experimental method for the investigation of the abrasive water jet cutting quality. J. Mater. Process. Technol. 209(20), 6190–6195 (2009)

    Article  Google Scholar 

  • P. Hu, J.M. Zhang, Z.J. Pei, C. Treadwell, Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J. Mater. Process. Technol. 129, 339–344 (2002)

    Article  Google Scholar 

  • K. Ishikawa, H. Suwabe, T. Nishide, M. Uneda, A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Prec. Eng. 22, 197–206 (1998)

    Article  Google Scholar 

  • Y. Jiao, W.J. Liu, Z.J. Pei, X.J. Xin, C. Treadwell, Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J. Manuf. Sci. Eng. 127(4), 752–758 (2005)

    Article  Google Scholar 

  • E. Kai, M. Takahira, Micro ultrasonic machining by application of work-piece vibration. CIRP Ann. 48(1), 131–134 (1999)

    Article  Google Scholar 

  • G.S. Kainth, A. Nandy, K. Singh, On the mechanisms of material removal in ultrasonic machining. Int. J. Mach. Tool Des. 19, 33–41 (1979)

    Article  Google Scholar 

  • F. Kartal, H. Gökkaya, Aşındırıcı Su Jeti ile Tornalama Deney Düzeneği Tasarımı. In International Iron & Steel Symposium Karabük, Türkiye (2012)

    Google Scholar 

  • F. Kartal, M.H. Çetin, H. Gökkaya, Z. Yerlikaya, Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method. Int. Polym. Proc. 29(4), 535–544 (2014)

    Article  Google Scholar 

  • V.F. Kazantsev, The relationship between output and machining conditions in ultrasonic machining. Mach. Tool. 34, 14–17 (1963)

    Google Scholar 

  • V.F. Kazantsev, Improving the output and accuracy of ultrasonic machining. Mach. Tool. 37(4), 33–39 (1966)

    Google Scholar 

  • D.C. Kennedy, R.J. Grieve, Ultrasonic machining—a review. Prod. Eng. 54(9), 481–486 (1975)

    Article  Google Scholar 

  • L. Koops, Investigation into the influence of the wear of abrasive powder on the technological indices of ultrasonic machining. Ann. CIRP 13(3), 151–157 (1964)

    Google Scholar 

  • D. Kremer, The state of the art of ultrasonic machining. Ann. CIRP 30, 107–115 (1981)

    Article  Google Scholar 

  • J.B. Kohals, Ultrasonic manufacturing process-ultrasonic machining and ultrasonic impact grinding (USIG). The Carbide and Tool J. 16(5), 12–15 (1984)

    Google Scholar 

  • M. Komaraiah, P.N. Reddy, A study on the influence of workpiece properties in ultrasonic machining. Int. J. Mach. Tools Manuf. 33, 495–505 (1993a)

    Google Scholar 

  • M. Komariah, P.N. Reddy, Relative performance of tool materials in ultrasonic machining. Wear 161(1–2), 1–10 (1993b)

    Google Scholar 

  • R. Kovacevic, A new sensing system to monitor abrasive waterjet nozzle wear. J. Mater. Process. Technol. 28(1–2), 117–125 (1991)

    Article  Google Scholar 

  • R. Kovacevic, M. Hashish, R. Mohan, M. Ramulu, T.J. Kim, E.S. Geskin, State of the art of research and development in abrasive waterjet machining. J. Manuf. Sci. Eng. 119(4B), 776–785 (1997)

    Article  Google Scholar 

  • J. Kumar, J.S. Khamba, An experimental study on ultrasonic machining of pure titanium using designed experiments. J. Brazilian Soc. Mech. Sci. Eng. 30(3), 231–238 (2008)

    Article  Google Scholar 

  • J. Kumar, J.S. Khamba, S.K. Mohapatra, An investigation into the machining characteristics of titanium using ultrasonic machining. Int. J. Mach. Mach. Mater. 3(1–2), 143–161 (2008)

    Google Scholar 

  • A. Kumar, V. Kumar, J. Kumar, Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology. Int. J. Eng. Technol. 2(4), 708–712 (2012)

    Google Scholar 

  • A. Kumar, V. Kumar, J. Kumar, Investigation of machining parameters and surface integrity in wire electric discharge machining (WEDM) of pure titanium. In Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2013a) https://doi.org/10.1177/0954405413479791

  • A. Kumar, V. Kumar, J. Kumar, Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. In International Journal of Advanced Manufacturing Technology (2013b) https://doi.org/10.1007/s00170-013-4861-9

  • H. Kumehara, Characteristics of threaded joints in ultrasonic vibrating system. Bull. JSME 27(223), 117–123 (1984)

    Article  Google Scholar 

  • S. Kunaporn, M. Ramulu, M. Hashish, Mathematical modeling of ultra-high-pressure waterjet peening. J. Eng. Mater. Technol. 127(2), 186–191 (2005)

    Article  Google Scholar 

  • Z.C. Li, Wu-L Cai, Z.J. Pei, C. Treadwell, Edge chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int. J. Mach. Tools Manuf. 46(12–13), 1469–1477 (2005)

    Google Scholar 

  • W.Y. Li, J. Wang, Y.M. Ali, An experimental study of radial-mode abrasive waterjet turning of steels. Mater. Sci. Orum 697, 166–170 (2012)

    Google Scholar 

  • Z. Liang, Y. Wu, X. Wang, W. Zhao, A new two dimensional ultrasonic assisted grinding (UAG) method and its fundamental performance in monocrystal silicon machining. Int. J. Mach. Tools Manuf. 50, 728–736 (2010)

    Article  Google Scholar 

  • H. Liu, J. Wang, N. Kelson, R.J. Brown, A study of abrasive waterjet characteristics by CFD simulation. J. Mater. Process. Technol. 153, 488–493 (2004)

    Article  Google Scholar 

  • T.C. Lee, C.W. Chan, Mechanism of the ultrasonic machining of ceramic composites. J. Mater. Process. Technol. 71, 195–201 (1997)

    Article  Google Scholar 

  • C. Ma, R.T. Deam, A correlation for predicting the kerf profile from abrasive water jet cutting. Exp. Thermal Fluid Sci. 30(4), 337–343 (2006)

    Article  Google Scholar 

  • M.A. Majeed, L. Vijayaraghvan, S.K. Malhotra, R. KrishnaMurthy, Ultrasonic machining of Al2O3/LaPO4 composites. Int. J. Mach. Tools Manuf. 48, 40–46 (2008)

    Article  Google Scholar 

  • A.I. Markov, Kinematics of the dimensional ultrasonic machining method. Mach. Tool. 30(10), 28–31 (1959)

    Google Scholar 

  • A.I. Markov, Ultrasonic drilling and milling of hard non-metallic materials with diamond tools. Mach. Tool. 48(9), 45–47 (1977)

    Google Scholar 

  • L.G. Merkulov, Design of ultrasonic concentrations. Akusticheskiy Zhurnal 3, 246–255 (1957)

    Google Scholar 

  • G.E. Miller, Special theory of ultrasonic machining. J. Appl. Phys. 28(2), 149–156 (1957)

    Article  Google Scholar 

  • A.W. Momber, R. Kovacevic, Principles of abrasive water jet machining (Springer Science & Business Media, USA, 2012)

    MATH  Google Scholar 

  • D. Moore, Ultrasonic impact grinding. In Proceedings Non-Traditional Machining Conference, Cinicinnati, OH, USA, 1985, pp. 137–139

    Google Scholar 

  • E.V. Nair, A. Ghosh, A fundamental approach to the study of mechanics of ultrasonic machining. Int. J. Prod. Res. 23, 731–753 (1985)

    Google Scholar 

  • M. Nanduri, D.G. Taggart, T.J. Kim, A study of nozzle wear in abrasive entrained water jetting environment. J. Tribol. 122(2), 465–471 (2000)

    Article  Google Scholar 

  • M. Nanduri, D.G. Taggart, T.J. Kim, The effects of system and geometric parameters on abrasive water jet nozzle wear. Int. J. Mach. Tools Manuf. 42(5), 615–623 (2002)

    Article  Google Scholar 

  • E.A. Neppiras, Ultrasonic machining and forming. Ultrasonics. 2(4), 167–173 (1964)

    Article  Google Scholar 

  • G. Nishimura, Ultrasonic machining—Part I. J. Fract. Eng. Tokyo University 24(3), 65–100 (1954)

    Google Scholar 

  • E.A. Neppiras, Ultrasonic machining-II. Operating conditions and performance of ultrasonic drills. Philips Technol. Rev. 18(12), 368–379 (1957)

    Google Scholar 

  • P.C. Pandey, H.S. Shan, Modern Machining Processes (Tata McGraw-Hill, New Delhi, 1980), pp. 7–38

    Google Scholar 

  • Z.J. Pei, N. Khanna, P.M. Ferreira, Rotary ultrasonic machining of structural ceramics—a review. Ceram. Eng. Sci. Proc. 16(1), 259–278 (1995)

    Article  Google Scholar 

  • Z.J. Pei, P.M. Ferreira, An experimental investigation of rotary ultrasonic face milling. Int. J. Mach. Tools Manuf. 39(8), 1327–1344 (1999)

    Article  Google Scholar 

  • E.W. Pentland, J.A. Ektermanis, Improving ultrasonic machining rates—some feasibility studies. J. Eng. Indus. Trans. ASME 87, 39–46 (1965)

    Article  Google Scholar 

  • D. Prabhakar, M. Haselkorn, An experimental investigation of material removal rates in rotary ultrasonic machining. Trans. NAMRI = SME, 20, 211–218 (1992)

    Google Scholar 

  • M. Ramulu, D. Arola, Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite. Composites 24(4), 299–308 (1993)

    Article  Google Scholar 

  • M. Ramulu, Ultrasonic machining effects on the surface finish and strength of silicon carbide ceramics. Int. J. Manuf. Technol. Manag. 7(2/3/4), 107–125 (2005)

    Google Scholar 

  • V. Riddie, Cavitation erosion—a survey of the literature 1940–1970. Wear 23, 133–137 (1973)

    Article  Google Scholar 

  • L.D. Rozenberg, V.F. Kazantsev, L.O. Makarov, Ultrasonic Cutting (Consultant Bureau, New York, 1964), pp. 97–102

    Google Scholar 

  • L.D. Rozenberg, Physical Principles of Ultrasonic Technology, 1–2 (Plenum Press, New York, 1973), pp. 20–53

    Chapter  Google Scholar 

  • J. Saha, A. Bhattacharya, P.K. Mishra, Estimation of material removal rates in USM process—a theoretical and experimental study. In Proceedings 27th International Matador Conference Manchester, England, 31–46 (1988)

    Google Scholar 

  • A. Sharma, S. Mishiro, K. Suzuki, T. Imai, A new longitudinal mode ultrasonic transducer with an eccentric horn for micro machining. Key Eng. Mater. 238–239, 147–152 (2003)

    Article  Google Scholar 

  • M.C. Shaw, Ultrasonic grinding. Ann. CIRP 5, 25–53 (1956)

    Google Scholar 

  • R. Snoyes, Non-conventional machining techniques: the state of art. Adv. Non-Trad. Mach. ASME, 1–20 (1986)

    Google Scholar 

  • V. Soundrajan, V. Radhakrishnan, An experimental investigation on the basic mechanisms involved in the ultrasonic machining. Int. J. Mach. Tool Des. Res. 26(3), 307–321 (1986)

    Article  Google Scholar 

  • P.S. Sreejith, B.K.A. Ngoi, Material removal mechanisms in precision machining of new materials. Int. J. Mach. Tools Manuf 41, 1831–1843 (2001)

    Article  Google Scholar 

  • T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, The effect of operating parameters on ultrasonic contour machining. In Proceedings 12th Annual Conference of the Irish Manufacturing Committee, Cork, Ireland, Sep., 1995, pp. 305–312 (1995)

    Google Scholar 

  • T.B. Thoe, D.K. Aspinwall, N. Killey, Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J. Mater. Process. Technol, 92, 323–328 (1999)

    Google Scholar 

  • C. Treadwell, P. Hu, J.M. Zhang, Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J. Mater. Process. Technol. 129(1–3), 339–344 (2002)

    Google Scholar 

  • G. Vikram, N.R. Babu, Modelling and analysis of abrasive water jet cut surface topography. Int. J. Mach. Tools Manuf. 42(12), 1345–1354 (2002)

    Article  Google Scholar 

  • Z.Y. Wang, K.P. Rajurkar, Dynamic analysis of ultrasonic machining process. In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, Part I: 87–97 (1995)

    Google Scholar 

  • J. Wang, Abrasive waterjet machining of polymer matrix composites—cutting performance, erosive process and predictive models. Int. J. Adv. Manuf. Technol. 15(10), 757–768 (1999)

    Article  Google Scholar 

  • Z. Wansheng, W. Zhenlong, D. Shichun, C. Guanxin, W. Hongyu, Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J. Mater. Process. Technol, 120(1–3), 101–106 (2002)

    Article  Google Scholar 

  • E.J. Weller, Non-traditional machining processes. Society of Manufacturing Engineers, 15–71 (1984)

    Google Scholar 

  • G.W. Willard, Ultrasonically induced cavitation. J. Acoust. Soc. America 25, 669 (1953)

    Article  Google Scholar 

  • G. Ya, H.W. Quin, S.C. Yang, Analysis of rotary ultrasonic machining mechanism. J. Mater. Process. Technol. 129(1–3), 182–185 (2002)

    Article  Google Scholar 

  • K. Yanaida, A. Ohashi, Flow characteristics of water jets. In Second International Symposium on Jet Cutting Technology, A2, Cranfield, pp. 19–32 (1974)

    Google Scholar 

  • K. Yanaida, A. Ohashi, Flow characteristics of water jets in air. In Fifth International Symposium on Jet Cutting Technology, A3, Hannover, pp. 33–43 (1980)

    Google Scholar 

  • H.A. Youssef, H.A. El-Hofy, Machining technology: machine tools and operations. CRC Press (2008)

    Google Scholar 

  • W.M. Zeng, Z.C. Li, Z.J. Pei, C. Treadwell, Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int. J. Mach. Tools Manuf. 45, 1468–1473 (2005)

    Article  Google Scholar 

  • M. Zvoncan, M. Beno, M. Kovac, J. Peterka, Cross section of machined layer for rotary ultrasonic machining with a hollow drill. Manuf. Indus. Eng. 11(3), 11–13 (2012)

    Google Scholar 

  • Z.W. Zhong, Z.Z. Han, Turning of glass with abrasive waterjet. Mater. Manuf. Proc. 17(3), 339–349 (2002)

    Article  Google Scholar 

  • I. Zohourkari, M. Zohoor, Mathematical modeling of abrasive waterjet turning of ductile materials. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (American Society of Mechanical Engineers, 2010), pp. 825–830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K., Zindani, D., Davim, J.P. (2018). Mechanical Machining. In: Advanced Machining and Manufacturing Processes. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-76075-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76075-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76074-2

  • Online ISBN: 978-3-319-76075-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics