Skip to main content

Laser-Microwave Double-Resonance Spectroscopy

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1040 Accesses

Abstract

In special situations, optical and microwave spectroscopy can be combined to constitute a powerful tool that uses the high spectral resolution of the microwaves and the good detection properties of optical light. Here, we briefly discuss its application to the determination of magnetic moments of the nucleus and the electron bound in highly charged ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.G. Major, G. Werth, High-resolution magnetic hyperfine resonance in harmonically bound ground-state \(^{199}\)Hg ions. Phys. Rev. Lett. 30, 1155 (1973)

    Article  ADS  Google Scholar 

  2. M. McGuire, R. Petsch, G. Werth, Precision determination of the ground-state hyperfine separation in \(^{199}\)Hg\(^+\) using the ion-storage technique. Phys. Rev. A 17, 1999 (1978)

    Article  ADS  Google Scholar 

  3. R. Blatt, G. Werth, Precision ground state Hfs-separation of \(^{137}\)Ba. Z. Phys. A 299, 93 (1981)

    Article  ADS  Google Scholar 

  4. R. Blatt, H. Schnatz, G. Werth, Ultrahigh-resolution microwave spectroscopy on trapped \(^{171}\)Yb\(^+\) ions. Phys. Rev. Lett. 48, 1601 (1982)

    Article  ADS  Google Scholar 

  5. X. Feng, G.Z. Li, G. Werth, High-precision hyperfine spectroscopy in M1–M1 double-resonance transitions on trapped \(^{207}\)Pb\(^+\). Phys. Rev. A 46, 2959 (1992)

    Article  ADS  Google Scholar 

  6. T. Nakamura et al., Precision spectroscopy of the Zeeman splittings of the \(^9\)Be\(^+\) 2\(^2\)S\(_{1/2}\) hyperfine structure for nuclear structure studies. Opt. Commun. 205, 329 (2002)

    Article  ADS  Google Scholar 

  7. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)

    Google Scholar 

  8. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  9. T. Beier, The \(g_j\)-factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions. Phys. Rep. 339, 79 (2000)

    Article  ADS  Google Scholar 

  10. J.R. Crespo López-Urrutia, P. Beiersdorfer, D.W. Savin, K. Widmann, Direct observation of the spontaneous emission of the hyperfine transition \(F=4\) to \(F=3\) in ground state hydrogenlike \(^{165}\)Ho\(^{66+}\) in an electron beam ion trap. Phys. Rev. Lett. 77, 826 (1996)

    Article  ADS  Google Scholar 

  11. J.R. Crespo López-Urrutia et al., Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions \(^{185}\)Re\(^{74+}\) and \(^{187}\)Re\(^{74+}\). Phys. Rev. A 57, 879 (1998)

    Article  ADS  Google Scholar 

  12. P. Beiersdorfer et al., Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)

    Article  ADS  Google Scholar 

  13. P. Seelig et al., Ground state hyperfine splitting of hydrogenlike \(^{207}\)Pb\(^{81+}\) by laser excitation of a bunched ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81, 4824 (1998)

    Article  ADS  Google Scholar 

  14. S. Borneis et al., Ground state hyperfine structure of heavy hydrogen like ions. Hyp. Int. 127, 305 (2000)

    Article  ADS  Google Scholar 

  15. I. Klaft et al., Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike \(^{209}\)Bi\(^{82+}\). Phys. Rev. Lett. 73, 2425 (1994)

    Article  ADS  Google Scholar 

  16. P. Beiersdorfer, A.L. Osterheld, J.H. Scofield, J.R. Crespo López-Urrutia, K. Widmann, Measurement of QED and hyperfine splitting in the 2s\(_{1/2}\) - 2p\(_{3/2}\) X-ray transition in Li-like \(^{209}\)Bi\(^{80+}\). Phys. Rev. Lett. 80, 3022 (1998)

    Article  ADS  Google Scholar 

  17. A.N. Artemyev, V.M. Shabaev, G. Plunien, G. Soff, V.A. Yerokhin, Vacuum-polarization corrections to the hyperfine splitting in heavy ions and to the nuclear magnetic moments. Phys. Rev. A 63, 062504 (2001)

    Article  ADS  Google Scholar 

  18. V.M. Shabaev, A.N. Artemyev, V.A. Yerokhin, O.M. Zherebtsov, G. Soff, Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)

    Article  ADS  Google Scholar 

  19. V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, G. Plunien, All-orders results for the one-electron QED correction to the hyperfine structure in light H-like ions. Phys. Rev. A 72, 052510 (2005)

    Article  ADS  Google Scholar 

  20. A.A. Elizarov, V.M. Shabaev, N.S. Oreshkina, I.I. Tupitsyn, T. Stoehlker, The hyperfine structure of heavy hydrogen-like ions: calculation based on experimental data on muonic atoms. Opt. Spectrosc. 100, 361 (2006)

    Article  ADS  Google Scholar 

  21. D.L. Moskovkin, V.M. Shabaev, Zeeman effect of the hyperfine-structure levels in hydrogenlike ions. Phys. Rev. A 73, 052506 (2006)

    Article  ADS  Google Scholar 

  22. D.L. Moskovkin, V.M. Shabaev, W. Quint, Zeeman effect of the hyperfine structure levels in lithiumlike ions. Phys. Rev. A 77, 063421 (2008)

    Article  ADS  Google Scholar 

  23. A.V. Volotka, D.A. Glazov, I.I. Tupitsyn, N.S. Oreshkina, G. Plunien, V.M. Shabaev, Ground-state hyperfine structure of H-, Li-, and B-like ions in the intermediate-Z region. Phys. Rev. A 78, 062507 (2008)

    Article  ADS  MATH  Google Scholar 

  24. N.S. Oreshkina, D.A. Glazov, A.V. Volotka, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Radiative and interelectronic-interaction corrections to the hyperfine splitting in highly charged B-like ions. Phys. Lett. A 372, 675 (2008)

    Article  ADS  MATH  Google Scholar 

  25. D.A. Glazov, A.V. Volotka, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Evaluation of the screened QED corrections to the g factor and the hyperfine splitting of lithiumlike ions. Phys. Rev. A 81, 062112 (2010)

    Article  ADS  Google Scholar 

  26. A.V. Volotka, D.A. Glazov, O.V. Andreev, V.M. Shabaev, I.I. Tupitsyn, G. Plunien, Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108, 073001 (2012)

    Article  ADS  Google Scholar 

  27. D. Budker, D.F. Kimball, D.P. DeMille, Atomic Physics (Oxford University Press, Oxford, 2004)

    Google Scholar 

  28. M. Vogel, W. Quint, Trap-assisted precision spectroscopy of forbidden transitions in highly charged ions. Phys. Rep. 490, 1 (2010)

    Article  ADS  Google Scholar 

  29. H. Marxer, L. Spruch, Semiclassical estimation of the radiative mean lifetimes of hydrogenlike states. Phys. Rev. A 43, 1268 (1991)

    Article  ADS  Google Scholar 

  30. M.W. Horbatsch, M. Horbatsch, E.A. Hessels, A universal formula for the accurate calculation of hydrogenic lifetimes. J. Phys. B 38, 1765 (2005)

    Article  ADS  Google Scholar 

  31. A.N. Artemyev et al., Ab initio calculations of the 2 p3/2-2 p1/2 fine-structure splitting in boronlike ions. Phys. Rev. A 88, 032518 (2013)

    Article  ADS  Google Scholar 

  32. W. Quint, D. Moskovkin, V.M. Shabaev, M. Vogel, Laser-microwave double-resonance technique for \(g\)-factor measurements in highly charged ions. Phys. Rev. A 78, 032517 (2008)

    Article  ADS  Google Scholar 

  33. P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989)

    Article  ADS  Google Scholar 

  34. M.G.H. Gustavsson, A.-M. Martensson-Pendrill, Need for remeasurements of nuclear magnetic dipole moments. Phys. Rev. A 58, 3611 (1998)

    Article  ADS  Google Scholar 

  35. F.A. Jenkins, E. Segré, The quadratic Zeeman Effect. Phys. Rev. 55, 52 (1939)

    Article  ADS  MATH  Google Scholar 

  36. L.I. Schiff, H. Snyder, Theory of the quadratic Zeeman Effect. Phys. Rev. 55, 59 (1939)

    Article  ADS  MATH  Google Scholar 

  37. W.R.S. Garton, F.S. Tomkins, Diamagnetic Zeeman Effect and magnetic configuration mixing in long spectral series of BA I. Astrophys. J. 158, 839 (1969)

    Article  ADS  Google Scholar 

  38. G. Feinberg, A. Rich, J. Sucher, Quadratic Zeeman effect in positronium. Phys. Rev. A 41, 3478 (1990)

    Article  ADS  Google Scholar 

  39. M. Raoult, S. Guizard, D. Gauyacq, A. Matzkin, Quadratic Zeeman effect in Rydberg states of NO. J. Phys. B. 38, S171 (2005)

    Article  ADS  Google Scholar 

  40. D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Laser-Microwave Double-Resonance Spectroscopy. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_20

Download citation

Publish with us

Policies and ethics