Skip to main content

Step by Step: Evaluating Navigation Styles in Mixed Reality Entertainment Experience

  • Conference paper
  • First Online:
Advances in Computer Entertainment Technology (ACE 2017)

Abstract

The availability of depth sensing technology in smartphones and tablets adds spatial awareness as an interaction modality to mobile entertainment experiences and showcases the potential of Mixed Reality (MR) for creating immersive and engaging experiences in real world contexts. However, the lack of design knowledge about interactions within MR represents a barrier to creating effective entertainment experiences. Faced with this challenge, we contribute a study of three navigation styles (NS) for MR experiences shown on a handheld device. The navigation styles range from fully virtual, through a mixed style that involves both on-screen and in-world activity, to fully real navigation. Our findings suggest that when designing an MR experience, the navigation style deployed should reflect the context, content and required interactions. For our MR experience, “The Old Pharmacy”, with its specific content, context and required interactions, results show that navigation styles relying on in-world activity leads to higher levels of Presence, Immersion and Flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.oculus.com.

  2. 2.

    www.htcvive.com.

  3. 3.

    www.priovr.com.

References

  1. Tango. https://get.google.com/tango/

  2. Microsoft: Microsoft HoloLens. https://www.microsoft.com/microsoft-hololens/en-us

  3. Sing, K.H., Xie, W.: Garden: a mixed reality experience combining virtual reality and 3D reconstruction. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 180–183. ACM, New York (2016)

    Google Scholar 

  4. Zhang, J., Ogan, A., Liu, T.C., Sung, Y.T., Chang, K.E.: The influence of using augmented reality on textbook support for learners of different learning styles. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 107–114 (2016)

    Google Scholar 

  5. Möller, A., Kranz, M., Huitl, R., Diewald, S., Roalter, L.: A mobile indoor navigation system interface adapted to vision-based localization. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, pp. 4:1–4:10. ACM, New York (2012)

    Google Scholar 

  6. Rao, Q., Tropper, T., Grünler, C., Hammori, M., Chakraborty, S.: AR-IVI — implementation of in-vehicle augmented reality. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 3–8 (2014)

    Google Scholar 

  7. Grubert, J., Langlotz, T., Zollmann, S., Regenbrecht, H.: Towards pervasive augmented reality: context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23, 1706–1724 (2016)

    Article  Google Scholar 

  8. Waterworth, J.: Human-Experiential Design of Presence in Everyday Blended Reality. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-30334-5

    Book  Google Scholar 

  9. Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and Telepresence Technologies, pp. 282–293. International Society for Optics and Photonics (1995)

    Google Scholar 

  10. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77, 1321–1329 (1994)

    Google Scholar 

  11. Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. MIT Press, Cambridge (2001)

    Google Scholar 

  12. Cheok, A.D., Fong, S.W., Goh, K.H., Yang, X., Liu, W., Farzbiz, F.: Human Pacman: a sensing-based mobile entertainment system with ubiquitous computing and tangible interaction. In: Proceedings of the 2nd Workshop on Network and System Support for Games, pp. 106–117. ACM (2003)

    Google Scholar 

  13. Cheok, A.D., Yang, X., Ying, Z.Z., Billinghurst, M., Kato, H.: Touch-space: mixed reality game space based on ubiquitous, tangible, and social computing. Pers. Ubiquitous Comput. 6, 430–442 (2002)

    Article  Google Scholar 

  14. Farbiz, F., Cheok, A.D., Wei, L., ZhiYing, Z., Ke, X., Prince, S., Billinghurst, M., Kato, H.: Live three-dimensional content for augmented reality. IEEE Trans. Multimed. 7, 514–523 (2005)

    Article  Google Scholar 

  15. Bowlby, J.: Attachment and Loss. Basic Books, New York (1983)

    Google Scholar 

  16. Ijsselsteijn, W., de Kort, Y., Poels, K.: The game experience questionnaire: development of a self-report measure to assess the psychological impact of digital games. Manuscript in Preparation

    Google Scholar 

  17. Ermi, L., Mäyrä, F.: Fundamental components of the gameplay experience: analysing immersion. Worlds Play Int. Perspect. Digit. Games Res. 37, 37–53 (2005)

    Google Scholar 

  18. Slater, M., Usoh, M.: Body centred interaction in immersive virtual environments. In: Artificial Life and Virtual Reality, pp. 125–148. Wiley (1994)

    Google Scholar 

  19. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ. 7, 225–240 (1998)

    Article  Google Scholar 

  20. Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: walking in place through virtual environments. Presence Teleoperators Virtual Environ. 8, 598–617 (1999)

    Article  Google Scholar 

  21. Brooks Jr., F.P., Airey, J., Alspaugh, J., Bell, A., Brown, R., Hill, C., Nimscheck, U., Rheingans, P., Rohlf, J., Smith, D., et al.: Six generations of building walkthrough: final technical report to the National Science Foundation (1992)

    Google Scholar 

  22. Chung, J.C.: A comparison of head-tracked and non-head-tracked steering modes in the targeting of radiotherapy treatment beams. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics, pp. 193–196. ACM, Cambridge (1992)

    Google Scholar 

  23. Fairchild, K.M., Lee, B.H., Loo, J., Ng, H., Serra, L.: The heaven and earth virtual reality: designing applications for novice users. In: 1993 IEEE Virtual Reality Annual International Symposium, pp. 47–53 (1993)

    Google Scholar 

  24. Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201–219 (1995)

    Article  Google Scholar 

  25. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, F.P.: Walking > Walking-in-place > Flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364. ACM Press/Addison-Wesley Publishing Co., New York (1999)

    Google Scholar 

  26. Hwang, J., Jung, J., Kim, G.J.: Hand-held virtual reality: a feasibility study. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 356–363. ACM (2006)

    Google Scholar 

  27. Lopes, P., Ion, A., Kovacs, R.: Using your own muscles: realistic physical experiences in VR. XRDS 22, 30–35 (2015)

    Article  Google Scholar 

  28. Lopes, P., Ion, A., Baudisch, P.: Impacto: simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pp. 11–19. ACM (2015)

    Google Scholar 

  29. Tregillus, S.: VR-Drop: exploring the use of walking-in-place to create immersive VR games. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 176–179. ACM, New York (2016)

    Google Scholar 

  30. Tregillus, S., Folmer, E.: VR-STEP: walking-in-place using inertial sensing for hands free navigation in mobile VR environments. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1250–1255. ACM, New York (2016)

    Google Scholar 

  31. McGill, M., Boland, D., Murray-Smith, R., Brewster, S.: A dose of reality: overcoming usability challenges in VR head-mounted displays. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2143–2152. ACM, New York, NY, USA (2015)

    Google Scholar 

  32. Rabbx Inc.: Ghostly Mansion (2015)

    Google Scholar 

  33. NVYVE Inc.: Car Visualizer

    Google Scholar 

  34. Elementals Studio: Home AR Designer

    Google Scholar 

  35. Defective Studios: WorldBuilder

    Google Scholar 

  36. Lee, J.: Tango Minitown

    Google Scholar 

  37. Project Tango: Project Tangosaurs

    Google Scholar 

  38. Angstrom Tech: Solar Simulator

    Google Scholar 

  39. Bracken, C.C., Skalski, P.: Immersed in Media: Telepresence in Everyday Life. Routledge, New York (2010)

    Google Scholar 

  40. Unity - Game Engine. https://unity3d.com/

  41. Heeter, C.: Being there: the subjective experience of presence. Presence Teleoperators Virtual Environ. 1, 262–271 (1992)

    Article  Google Scholar 

  42. Schubert, T.W.: The sense of presence in virtual environments: a three-component scale measuring spatial presence, involvement, and realness. Z. Für Medien. 15, 69–71 (2003)

    Article  Google Scholar 

  43. Turner, P.: The intentional basis of presence. In: Proceedings of the 10th International Workshop on Presence, pp. 127–134. Citeseer (2007)

    Google Scholar 

  44. Perneger, T.V.: What’s wrong with Bonferroni adjustments. BMJ 316, 1236–1238 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge our fellow researchers Rui Trindade, Sandra Câmara, Dina Dionísio and the support of LARSyS (Projeto Estratégico LA 9 - UID/EEA/50009/2013), MITIExcell (M1420-01-0145-FEDER-000002) and the Ph.D. Grants: PD/BD/114142/2015 and PD/BD/128330/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Dionísio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dionísio, M., Bala, P., Nisi, V., Oakley, I., Nunes, N. (2018). Step by Step: Evaluating Navigation Styles in Mixed Reality Entertainment Experience. In: Cheok, A., Inami, M., Romão, T. (eds) Advances in Computer Entertainment Technology. ACE 2017. Lecture Notes in Computer Science(), vol 10714. Springer, Cham. https://doi.org/10.1007/978-3-319-76270-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76270-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76269-2

  • Online ISBN: 978-3-319-76270-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics