Skip to main content

Discrete Transfer Function Models for Non Integer Order Inertial System

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

In the paper new, discrete, transfer function models of non integer order inertial plant are proposed. These models can be employed to digital modeling of high order dynamic systems, for example heat transfer systems. Models under consideration use Charef approximation and generating functions expressed by schemes given by Euler, Tustin and Al-Aloui. The practical stability and accuracy for all presented models is analysed also. Results are by simulations depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Alaoui, M.A.: Al-Alaoui operator and the \(\alpha \) -approximation for discretization of analog systems. Facta Univ. (Nis)Ser. Electron. Energ. 19(1), 143–146 (2006)

    Article  Google Scholar 

  2. Caponetto, R., Dongola, G., Fortuna, I., Petras, I.: Fractional Order Systems Modeling and Control Applications. World Scientific Series on Nonlinear Science, vol. 72. World Scientific Publishing, New Jersey (2010)

    Google Scholar 

  3. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractional system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MATH  Google Scholar 

  4. Chen, Y.Q.: Oustaloup Recursive Approximation for Fractional Order Differentiators, MathWorks Inc., Matlab Central File Exchange (2003)

    Google Scholar 

  5. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Das, S., Pan, I.: Fractional Order Signal Processing. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23117-9-2

    Book  MATH  Google Scholar 

  7. Dlugosz, M., Skruch, P.: The application of fractional-order models for thermal process modelling inside buildings. J. Build. Phys. 39, 1–13 (2015)

    Google Scholar 

  8. Djouambi, A., Charef, A., BesançOn, A.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Techn. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  10. Garrappa, R., Maione, G.: Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. LNEE, vol. 407, pp. 429–439. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45474-0_38

    Chapter  Google Scholar 

  11. Kaczorek, T.: Practical stability of positive fractional discrete-time systems. Bull. Pol. Acad. Sci. Tech. Sci. 56(4), 313–317 (2008)

    Google Scholar 

  12. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  13. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  14. Maione, G.: High-speed digital realizations of fractional operators in the delta domain. IEEE Trans. Autom. Control 56(3), 697–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad. Sci. Tech. Sci. 61(3), 581–587 (2013)

    Google Scholar 

  16. Obraczka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenom. 210, 265–270 (2014)

    Article  Google Scholar 

  17. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21th International Conference on Methods and Models in Automation and Robotics, 29 August–01 September 2016, pp. 184–188. Miedzyzdroje, Poland (2016). ISBN:978-1-5090-1866-6, 978-837518-791-5

    Google Scholar 

  18. Oprzędkiewicz, K., Kołacz, T.: A non integer order model of frequency speed control in AC motor. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 287–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29357-8_26

    Chapter  Google Scholar 

  19. Ostalczyk, P.: Discrete Fractional Calculus. Applications in control and image processing. Series in Computer Vision, vol. 4. World Scientific Publishing, Singapore (2016)

    MATH  Google Scholar 

  20. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. I 47(1), 25–39 (2000)

    Google Scholar 

  21. Stanislawski, R., Latawiec, K.J., Lukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grunwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015, 10 (2015). Article ID 512104

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was sponsored partially by AGH UST grant no. 11.11.120.815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K. (2018). Discrete Transfer Function Models for Non Integer Order Inertial System. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics