Skip to main content

New “Omics” Technologies and Biogas Production

  • Chapter
  • First Online:
Biogas

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 6))

Abstract

Biogas production from wastes and residues is classified among the versatile, energy-efficient, and environmentally beneficial strategies considered to gradually replace fossil fuels in the future. Nevertheless, biogas production from different resources is faced with many technical, efficiency, and cost challenges, and therefore, optimization of the various aspects of the process, including feeding, mixing, microbial community, as well as process monitoring and control are vital to enhance process efficiency. The microbial community structure and functions exert vital effects on the process stability and biogas yield. However, due to the lack of optimized culture media and conditions for most of the organisms involved in biogas production, the majority of the participating microbes as well as their genes and metabolic pathways during the process are yet to be well known. Recent developments in culture independent “omics” and next generation sequencing technologies (NGS) have provided excellent opportunities for exploring microbial communities and their factions during the anaerobic digestion process. Therefore, this chapter has focused on recent applications of new “omics”, including NGS-based whole genome sequencing, metagenomics, meta-transcriptomics, meta-proteomics, and met-metabolomics in characterization of microbial flora, their genes and encoded transcripts, proteins, and metabolites, as well as the metabolic pathways contributing to the anaerobic digestion process. Recent findings have confirmed that the revolutionary innovations and developments in these domains will help to enhance the efficiency of biogas production from a diverse range of organic matters with complex structures in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram F, Enright A-M, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2010) A metaproteomic approach gives functional insights into anaerobic digestion. Appl Microbiol 110:1550–1560

    Article  Google Scholar 

  • Anjum R, Grohmann E, Krakat, N (2017) Anaerobic digestion of nitrogen rich poultry manure: impact of thermophilic biogas process on metal release and microbial resistances. Chemosphere

    Article  Google Scholar 

  • Beale DJ, Karpe AV, McLeod JD, Gondalia SV, Muster TH, Othman MZ, Palombo EA, Joshi D (2016) An ‘omics’ approach towards the characterization of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Res 88:346–357

    Article  Google Scholar 

  • Benato A, Macor A (2017) Biogas engine waste heat recovery using organic Rankine cycle. Energies 10(3):327

    Article  Google Scholar 

  • Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A (2015) Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience 4(1):33

    Google Scholar 

  • Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9(1):26

    Article  Google Scholar 

  • Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314

    Article  Google Scholar 

  • Ciesielski S, Bułkowska K, Dabrowska D, Kaczmarczyk D, Kowal P, Możejko J (2013) Ribosomal intergenic spacer analysis as a tool for monitoring methanogenic archaea changes in an anaerobic digester. Curr Microbiol 67(2):240

    Article  Google Scholar 

  • Connaughton S, Collins G, O’Flaherty V (2006) Development of microbial community structure and activity in a high-rate anaerobic bioreactor at 18 C. Water Res 40:1009–1017

    Article  Google Scholar 

  • Delbès C, Moletta R, Godon JJ (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction–single-strand conformation polymorphism analysis. Environ Microbiol 2(5):506–515

    Article  Google Scholar 

  • Delmont TO, Simonet P, vogel TMJ (2012) Describing microbial communities and performing global comparisons in the “omic” era. ISME 6(1625–1628):18

    Google Scholar 

  • Deng L, Liu Y, Zheng D, Wang L, Pu X, Song L, Wang Z, Lei Y, Chen Z, Long Y (2016) Application and development of biogas technology for the treatment of waste in China. Renew Sustain Energy Rev

    Google Scholar 

  • Dollhofer V, Callaghan TM, Griffith GW, Lebuhn M, Bauer J (2017) Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. Biores Technol 235:131–139

    Article  Google Scholar 

  • Dong M, Wu Y, Li Q, Tian G, Yang B, Li Y, ZhangL Wang Y, Xiao W, Yin F, Zhao X, Zhang W, Cui X (2015) Investigation of methanogenic community structures in rural biogas digesters from different climatic regions in Yunnan, south west China. Curr Microbiol 70(5):679–684

    Article  Google Scholar 

  • Dubey SK, Meena RK, Sao S, Patel J, Shukla P (2014) Isolation and characterization of cellulose degrading bacteria from biogas slurry and their RAPD profiling. Curr Res Microbiol Biotechnol 2(4):416–421

    Google Scholar 

  • Dudhagara P, Ghelani A, Bhavsar S, Bhatt S (2015) Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India. Data Brief 4:266–268

    Article  Google Scholar 

  • Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss?). ISME J 5(5):777

    Article  Google Scholar 

  • Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerová K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecolo 90:1–17

    Article  Google Scholar 

  • Güllert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, Alawi M, Rattei T, Daniel R, Schmitz RA, Grundhoff A (2016) Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol Biofuels 9(1):121

    Article  Google Scholar 

  • Hahnke S, Maus I, Wibberg D, Tomazetto G, Pühler A, Klocke M, Schlüter A (2015) Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor. J Biotechnol 193:34–36

    Article  Google Scholar 

  • Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. System App Microbiol 36(5):330–338

    Article  Google Scholar 

  • Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M (2016) Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnol Biofuels 9(1):155

    Google Scholar 

  • Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M (2013) Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnol 30(6):614–622. https://doi.org/10.1016/j.nbt.2013.01.002

    Article  Google Scholar 

  • Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann K-H, Junemann S, Kaiser O, Krause L, Tille F et al (2010) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE 6:1–15

    Google Scholar 

  • Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W, Schwarz WH (2015a) Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 65(8):2365–2371

    Article  Google Scholar 

  • Koeck DE, Maus I, Wibberg D, Winkler A, Zverlov VV, Liebl W, Pühler A, Schwarz WH, Schlüter A (2015b) Draft genome sequence of Herbinix hemicellulosilytica T3/55 T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor. J Biotechnol 214:59–60

    Article  Google Scholar 

  • Koeck DE, Wibberg D, Maus I, Winkler A, Albersmeier A, Zverlov VV, Liebl W, Pühler A, Schwarz WH, Schlüter A (2014a) Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant. J Biotechnol 188:136–137

    Article  Google Scholar 

  • Koeck DE, Zverlov VV, Liebl W, Schwarz WH (2014b) Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential. Syst Appl Microbiol 37(5):311–319

    Article  Google Scholar 

  • Kohrs F, Heyer R, Bissinger T, Kottler R, Schallert K, Püttker S, Behne A, Rapp E, Benndorf D, Reichl U (2017) Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition. Anaerobe

    Google Scholar 

  • Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U (2014) Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 29:59–67

    Article  Google Scholar 

  • Kohrs F, Wolter S, Benndorf D, Heyer R, Hoffmann M, Rapp E et al. (2015) Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities. Proteomics 15(20):3585–3589. https://doi.org/10.1002/pmic.201400557

    Article  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49

    Article  Google Scholar 

  • Kučera L, Kurka O, Barták P, Bednář P (2017) Liquid chromatography/high resolution tandem mass spectrometry–tool for the study of polyphenol profile changes during micro-scale biogas digestion of grape marcs. Chemosphere 166:463–472

    Article  Google Scholar 

  • Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological pathways. Cardiovasc Res 97:612–622

    Article  Google Scholar 

  • Leclerc M, Delbes C, Moletta R, Godon JJ (2001) Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol Ecol 34(3):213–220

    Article  Google Scholar 

  • Li JM (2013) Biogas production in China: current status and future development. www.epa.gov/agstar/documents/conf13/Biogas Production in China—current status. Accessed June 2017

  • Li X, Liu YH, Zhang X, Ge CM, Piao RZ, Wang WD, Cui ZJ, Zhao HY (2017) Evaluation of biogas production performance and dynamics of the microbial community in different straws. J Microbiol Biotechnol 27:524–534

    Article  Google Scholar 

  • Lin YW, Tuan NN, Huang SL (2016) Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: A case study. Int Biodeterior Biodegradation 115:64–73

    Article  Google Scholar 

  • Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5(10):8982–8989

    Article  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Sys Bacteriol 49:545–556

    Article  Google Scholar 

  • Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, Zhao GP, Zhou ZH (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol 106(3):952–966

    Article  Google Scholar 

  • Luo G, Fotidis IA, Angelidaki I (2016) Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis. Biotechnol Biofuels 9(1):51

    Article  Google Scholar 

  • Manzoor S, Müller B, Niazi A, Bongcam-Rudloff E, Schnürer A (2013) Draft genome sequence of Clostridium ultunense strain Esp, a syntrophic acetate-oxidizing bacterium. Genome announcements 1(2):e00107–e00113

    Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  Google Scholar 

  • Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Pühler A, König H, Schlüter A (2014) Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MFT. J Biotechnol 192:40–41

    Article  Google Scholar 

  • Maus I, Wibberg D, Winkler A, Pühler A, Schnürer A (2016) Complete genome sequence of the methanogen Methanoculleus bourgensis BA1 isolated from a biogas reactor, 4(3):3–4

    Google Scholar 

  • Montag D, Schink B (2016) Biogas process parameters—energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl Microbiol Biotechnol 100(2):1019–1026

    Article  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2(4):e00159–11

    Article  Google Scholar 

  • Nettmann E, Bergmann I, Pramschüfer S, Mundt K, Plogsties V, Herrmann C, Klocke M (2010) Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol 76(8):2540–2548

    Article  Google Scholar 

  • Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke S, Fracowiak J, Pühler A, Schlüter A (2016) An integrated metagenome and-proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279

    Article  Google Scholar 

  • Raupach MJ, Amann R, Wheeler QD, Roos C (2016) The application of “-omics” technologies for the classification and identification of animals. Organisms Diversity Evol 16(1):1–12

    Article  Google Scholar 

  • Sasaki D, Sasaki K, Tsuge Y, Morita M, Kondo A (2014) Comparison of metabolomic profiles of microbial communities between stable and deteriorated methanogenic processes. Biores Technol 172:83–90

    Article  Google Scholar 

  • Stark L, Giersch T, Wünschiers R (2014) Efficiency of RNA extraction from selected bacteria in the context of biogas production and metatranscriptomics. Anaerobe 29:85–90

    Article  Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  Google Scholar 

  • Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N et al. (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8(1):14

    Article  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    Article  Google Scholar 

  • Suksong W, Kongjan P, Prasertsan P, Imai T, Sompong O (2016) Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Biores Technol 214:166–174

    Article  Google Scholar 

  • Sun L, Schnürer A (2016) Draft genome sequence of the cellulolytic strain Clostridium sp. Bc-iso-3 isolated from an industrial-scale anaerobic digester. Genome Announcements, 4(5):e01188–16

    Google Scholar 

  • Sun L, Liu T, Müller B, Schnürer A (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9(1):128

    Article  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Scvensson BH, Sorenson SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    Article  Google Scholar 

  • Tian G, Li Q, Dong M, Wu Y, Yang B, Zhang L et al. (2016) Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China. Environ Sci Poll Res 23(11):11137–11148

    Article  Google Scholar 

  • Tomazetto G, Hahnke S, Koeck DE, Wibberg D, Maus I, Pühler A, Klocke M, Schlüter A (2016) Complete genome analysis of Clostridium bornimense strain M2/40 T: A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor. J Biotechnol 232:38–49

    Article  Google Scholar 

  • Tomazetto G, Hahnke S, Maus I, Wibberg D, Pühler A, Schlüter A, Klocke M (2014) Complete genome sequence of Peptoniphilus sp. strain ing2-D1G isolated from a mesophilic lab-scale completely stirred tank reactor utilizing maize silage in co-digestion with pig and cattle manure for biomethanation. J Biotechnol 192:59–61

    Article  Google Scholar 

  • Treu L, Campanaro S, Kougias PG, Zhu X, Angelidaki I (2016a) Untangling the effect of fatty acid addition at species level revealed different transcriptional responses of the biogas microbial community members. Environ Sci Technol 50(11):6079–6090

    Article  Google Scholar 

  • Treu L, Kougias PG, Campanaro S, Bassani I, Angelidaki I (2016b) Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Biores Technol 216:260–266

    Article  Google Scholar 

  • Tsapekos P, Kougias PG, Frison A, Raga R, Angelidaki I (2016) Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Biores Technol 216:545–552

    Article  Google Scholar 

  • Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I (2017) Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Biores Technol 234:350–359

    Article  Google Scholar 

  • Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  Google Scholar 

  • Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5(1):41

    Article  Google Scholar 

  • Yang D, Fan X, Shi X, Lian S, Qiao J, Guo R (2014) Metabolomics reveals stage-specific metabolic pathways of microbial communities in two-stage anaerobic fermentation of corn-stalk. Biotech Lett 36(7):1461–1468

    Article  Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258

    Article  Google Scholar 

  • Zhao C, Ai C, Li Q, Yang C, Zhou G, Liu B (2016) Diversity of archaea and bacteria in a biogas reactor fed with Pennisetum sinese Roxb by 16S rRNA sequence analysis. Tropic J Pharmaceutical Res 15(12):2659–2667

    Article  Google Scholar 

  • Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97:5161–5174

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Dr. Meisam Tabatabaei for his assistance with carefully reviewing the manuscript and the improvements made as a result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Salehi Jouzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehi Jouzani, G., Sharafi, R. (2018). New “Omics” Technologies and Biogas Production. In: Tabatabaei, M., Ghanavati, H. (eds) Biogas. Biofuel and Biorefinery Technologies, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77335-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77335-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77334-6

  • Online ISBN: 978-3-319-77335-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics