Skip to main content

Structured Convolutional Compressed Sensing Based on Deterministic Subsamplers

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

Abstract

As a novel method to process sparse signals, compressed sensing (CS) attracts huge attention in recent years. The sensing matrix in traditional CS is completely Gaussian random, resulting in high complexity and expensive implementation cost. To solve the problem of randomness reduction, this paper investigates and applies some partially deterministic sensing matrices like Golay families, and realizes them based on several different recovery algorithms. The core procedure of structured convolutional CS is orderly selecting sparsified samples, usually in various frequency domains, then reconstructing using the same deterministic sensing matrices based on several popular recovery algorithms. Conclusions can be drawn that with these structured sensing matrices, we can get better reconstruction quality and more stable performance with less time cost.

Supported by: National Natural Science Foundation of China (61671332); Applied Basic Research Program of Wuhan City (2016010101010025); Basic Research Program of Shenzhen City (JCYJ20170306171431656); Fundamental Research Funds for the Central Universities (2042016gf0033); National Key Research and Development Program of China (2016YFB0100901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 155.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Candès, E.J., Tao, T., Romberg, J.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Saab, R., Chartrand, R., Yilmaz, Ä.O.: Stable sparse approximations via non-convex optimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3885–3888 (2008)

    Google Scholar 

  4. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  5. Chartrand, R., Yin, W.T.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872 (2008)

    Google Scholar 

  6. Wu, J., Liu, F., Jiao, L.C., Wang, X.D.: Compressive sensing SAR image reconstruction based on Bayesian framework and evolutionary computation. IEEE Trans. Image Process. 20(7), 1904–1911 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ji, S.H., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)

    Article  MathSciNet  Google Scholar 

  8. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications, pp. 348–393. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition. In: Asilomar Conference on Signals, Systems and Computers (1993)

    Google Scholar 

  10. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  11. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications, pp. 305–347. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  12. Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. IEEE Trans. Signal Process. 86(3), 589–602 (2006)

    MATH  Google Scholar 

  13. Ferguson, R.A., Borwein, P.B.: A complete description of Golay pairs for lengths up to 100. Math. Comput. 73, 967–985 (2003)

    Article  MathSciNet  Google Scholar 

  14. Frank, R.L.: Polyphase codes for good periodic correlation properties. IEEE Trans. Inf. Theory 9(1), 43–45 (1963)

    Article  MathSciNet  Google Scholar 

  15. Bareiss, E.H.: Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices. Numer. Math. 9(1), 404–424 (1969)

    Article  MathSciNet  Google Scholar 

  16. Zhang, P., Gan, L., Sun, S., Ling, C.: Modulated unit-norm tight frames for compressed sensing. IEEE Trans. Signal Process. 63(15), 3974–3985 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, K., Cong, S.: State of the art and prospects of structured sensing matrices in compressed sensing. Front. Comput. Sci. 9(5), 665–677 (2015)

    Article  Google Scholar 

  18. Li, K., Gan, L., Ling, C.: Convolutional compressed sensing using deterministic sequences. IEEE Trans. Signal Process. 61(3), 740–752 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wen, Z., Yin, W.: User Manual FPC-AS, A MATLAB solver for \( l_{1} \) regularized least squares problems. Version 1.0 (2008)

    Google Scholar 

  20. Combettes, P.L., Pesquet, J.-C.: A Douglas-Rachford splitting approach to non-smooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  21. Mallat, S.: A Wavelet Tour of Signal Processing (The Sparse Way), pp. 298–307. Elsevier Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  22. Yang, J., Zhang, Y., Yin, W.: A fast TV l1l2 minimization algorithm for signal reconstruction from partial Fourier data. IEEE Signal Process. 4(2), 288–297 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Wang, Z., Luo, Y. (2018). Structured Convolutional Compressed Sensing Based on Deterministic Subsamplers. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics