Skip to main content

Using Rules for Elaborating Mathematical Concepts

  • Chapter
  • First Online:
The Philosophy of Mathematics Education Today

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

This chapter focuses on an inferential view on elaborating concepts in mathematics classrooms. A framework is going to be presented and used, which helps to analyse and to reflect on the processes of teaching and learning mathematical concepts. The framework is based on Wittgenstein’s theory of language-games and especially its core, the primacy of the use of words. Concerning the theory of inferentialism by Robert Brandom, the inferential use of words in language-games can be regarded as an indicator of the understanding of a concept. Together, the theoretical framework combines the role of judgements and their connections via rules in inferences in order to describe processes of concept formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakker, A., & Derry, J. (2011). Lessons from inferential for statistics education. Mathematical Thinking and Learning, 13, 5–26.

    Article  Google Scholar 

  • Bauersfeld, H. (1995). Language games in the mathematics classroom. In H. Bauersfeld & P. Cobb (Eds.), The emergence of mathematical meaning (pp. 271–292). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Brandom, R. B. (2000). Articulating reasons. Cambridge: Harvard UP.

    Google Scholar 

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational studies in mathematics, 61(1/2), 103–131.

    Article  Google Scholar 

  • Fann, K. T. (1971). Die Philosophie Ludwig Wittgensteins [The philosophy of Ludwig Wittgenstein]. Munich: List.

    Google Scholar 

  • Fischer, R., & Malle, G. (2004). Mensch und Mathematik [Human beings and mathematics]. Munich: Profil.

    Google Scholar 

  • Hussmann, S. & Schacht, F. (2009). Toward an inferential approach analyzing concept formation and language processes. In Proceedings of CERME 6. Lyon.

    Google Scholar 

  • Kunsteller, J. (2016). Using family resemblances for elaborating mathematical rules in classroom communication. Philosophy of Mathematics Education Journal, 31. http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome31/index.html, last retrieve February 27, 2017.

  • Meyer, M. (2007). Entdecken und Begründen im Mathematikunterricht. Von der Abduktion zum Argument [Discovery and verification in mathematics education. From abduction to argument]. Hildesheim: Franzbecker.

    Google Scholar 

  • Meyer, M. (2010). Abduction—a logical view of processes of discovering and verifying knowledge in mathematics. Educational Studies in Mathematics, 74, 185–205.

    Article  Google Scholar 

  • Meyer, M. (2014). An inferential view on concept formation. In P. Liljedahl, S. Oesterle, C. Niole & D. Allen (Eds.), Proceedings of PME28 and PME-NA 36 (Vol. 4, pp. 217–224). Vancouver.

    Google Scholar 

  • Schmidt, S. (1998). Semantic structures of word problems. In C. Alsina, J. M. Alvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), 8th International Congress on Mathematical Education. Selected Lectures, Seville 1996 (pp. 385–295). Seville: S.A.E.M. ‘Thales’.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge: UP.

    Book  Google Scholar 

  • Steinbring, H. (2006). What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction, Educational studies in mathematics, 61, 133–162.

    Google Scholar 

  • Toulmin, S. E. (1996). Der Gebrauch von Argumenten [The use of arguments]. Weinheim: Beltz.

    Google Scholar 

  • Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht [Patterns of interaction and routines in mathematics education]. Weinheim: Beltz.

    Google Scholar 

  • Voigt, J. (1998). The culture of mathematics-classroom. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom (pp. 191–220). Cambridge: UP.

    Chapter  Google Scholar 

  • Winter, H. (1983). Über die Entfaltung begrifflichen Denkens im Mathematikunterricht. Journal für Mathematik-Didaktik, 3, 175–204.

    Article  Google Scholar 

  • Wittgenstein, L. (1963). Philosophical investigations. Oxford: Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer .

Editor information

Editors and Affiliations

Appendix

Appendix

  • Transcription

1. Paralinguistic signs

,:

a short stop while speaking, max. one second

..:

a short break, max. two seconds

sure-:

the voice lingers on at the end of a word or a comment

sure :

emphasis has been placed on this word

sure:

word spoken with a drawl

2. Other characterizations

(..):

vague, but assumed words

(shows):

characterization of body language and facial expressions

A row starts at the end of the last word of the previous statement: Noticeable quick follow-up, e.g.:

M::

why that

F::

therefore

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, M. (2018). Using Rules for Elaborating Mathematical Concepts. In: Ernest, P. (eds) The Philosophy of Mathematics Education Today. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-77760-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77760-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77759-7

  • Online ISBN: 978-3-319-77760-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics