Skip to main content

Biological Enhancement of X-Ray Effects

  • Chapter
  • First Online:
X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter discusses a new concept in X-ray nanochemistry – biological enhancement of X-ray effects using nanomaterials. Two types of biological enhancement are described here, and the rationale and principles of these two types are explained, followed by examples that provide the evidence for the existence of biological enhancement.

One needs to delocalize in order to build bonds with others

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.

    Article  CAS  PubMed  Google Scholar 

  2. Brun, E., & Sicard-Roselli, C. (2016). Actual questions raised by nanoparticle radiosensitization. Radiation Physics and Chemistry, 128, 134–142.

    Article  CAS  Google Scholar 

  3. Youkhana, E., Feltis, B., Blencowe, A., & Geso, M. (2017). Titanium dioxide nanoparticles as radiosensitisers: An in vitro and phantom-based study. International Journal of Medical Sciences, 14, 602–614.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosa, S., Connolly, C., Schettino, G., Butterworth, K. T., & Prise, K. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1), 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohr, D., Frey, S., Fischer, T., Guttler, T., & Gorlich, D. (2009). Characterisation of the passive permeability barrier of nuclear pore complexes. The EMBO Journal, 28, 2541–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27, 215101.

    Article  CAS  PubMed  Google Scholar 

  7. Luo, Y., Hossain, M., Wang, C. M., Qiao, Y., An, J. C., Ma, L. Y., & Su, M. (2013). Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale, 5, 687–694.

    Article  CAS  PubMed  Google Scholar 

  8. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.

    Article  CAS  PubMed  Google Scholar 

  9. Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.

    Article  CAS  PubMed  Google Scholar 

  11. Roa, W., Zhang, X. J., Guo, L. H., Shaw, A., Hu, X. Y., Xiong, Y. P., Gulavita, S., Patel, S., Sun, X. J., Chen, J., Moore, R., & Xing, J. Z. (2009). Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20(375101), 1–9.

    Google Scholar 

  12. Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P., & Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 173, 719–728.

    Article  CAS  PubMed  Google Scholar 

  13. Geng, F., Song, K., Xing, J. Z., Yuan, C. Z., Yan, S., Yang, Q. F., Chen, J., & Kong, B. H. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22(285101), 1–8.

    Google Scholar 

  14. Li, Y. J., Perkins, A. L., Su, Y., Ma, Y. L., Colson, L., Horne, D. A., & Chen, Y. (2012). Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 109, 4092–4097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rahman, W. N., Corde, S., Yagi, N., Aziz, S. A. A., Annabell, N., & Geso, M. (2014). Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine, 9, 2459–2467.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., Fan, S. J., Leong, D. T., Guo, M. L., & Xie, J. P. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports UK, 5, 8669.

    Article  CAS  Google Scholar 

  17. Li, Y. Y., Wang, Z. L., Liu, X. X., Tang, J. Y., Peng, B., & Wei, Y. Q. (2016). X-ray irradiated vaccine confers protection against pneumonia caused by pseudomonas aeruginosa. Scientific Reports UK, 6, 18823.

    Article  CAS  Google Scholar 

  18. Hossain, M., & Su, M. (2012). Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. Journal of Physical Chemistry C, 116, 23047–23052.

    Article  CAS  Google Scholar 

  19. Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., & Mo, X. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research (Tokyo), 56, 77–89.

    Article  CAS  Google Scholar 

  20. Her, S., Cui, L., Bristow, R. G., & Allen, C. (2016). Dual action enhancement of gold nanoparticle Radiosensitization by Pentamidine in triple negative breast cancer. Radiation Research, 185, 549–562.

    Article  CAS  PubMed  Google Scholar 

  21. Coulter, J. A., Butterworth, K. T., & Jain, S. (2015). Prostate cancer radiotherapy: Potential applications of metal nanoparticles for imaging and therapy. The British Journal of Radiology, 88, 20150256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, W. Z., Friedland, W., Li, W. B., Li, C. Y., Oeh, U., Qiu, R., Li, J. L., & Hoeschen, C. (2015). Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Physics in Medicine and Biology, 60, 6195–6212.

    Article  CAS  PubMed  Google Scholar 

  23. Friedland, W., Dingfelder, M., Kundrat, P., & Jacob, P. (2011). Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis, 711, 28–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Biological Enhancement of X-Ray Effects. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_4

Download citation

Publish with us

Policies and ethics