Skip to main content

A Visionary Way to Novel Process Optimizations

The Marriage of the Process Domain and Deep Neuronal Networks

  • Conference paper
  • First Online:
Business Modeling and Software Design (BMSD 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 309))

Included in the following conference series:

Abstract

Modern process optimization approaches do build on various qualitative and quantitative tools, but are mainly limited to simple relations in different process perspectives like cost, time or stock. In this paper, a new approach is presented which focuses on techniques of the area of Artificial Intelligence to capture complex relations within processes. Hence, a fundamental value increase is intended to be gained. Existing modeling techniques and languages serve as basic concepts and try to realize the junction of apparently contradictory approaches. This paper therefore draws a vision of promising future process optimization techniques and presents an innovative contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press Inc., Oxford (1995). ISBN 0198538642

    MATH  Google Scholar 

  2. Broomhead, D., Lowe, D.: Multivariate functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MATH  Google Scholar 

  3. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(6), 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambers, M., Mount-Campbell, C.A.: Process optimization via neural network metamodeling. Int. J. Prod. Econ. 79, 93–100 (2000)

    Article  Google Scholar 

  5. Deming, W.: Elementary Principles of the Statistical Control of Quality. JUSE, Tokyo (1950)

    Google Scholar 

  6. Deming, W.: Out of the Crisis. MIT Press, Cambridge (1986)

    Google Scholar 

  7. Deming, W.: The New Economics. MIT Press, Cambridge (1993)

    Google Scholar 

  8. Fahlman, S.: Faster learning variations on back-propagation: an empirical study. In: Touretszky, D., Hinton, G., Sejnowski, T. (eds.) Proceedings of the 1988 Connectionist Models Summer School, pp. 38–51. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  9. Gronau, N.: Geschäftsprozessmanagement in Wirtschaft und Verwaltung., 2. Gito (2017)

    Google Scholar 

  10. Gronau, N., Thiem, C., Ullrich, A., Vladova, G., Weber, E.: Ein Vorschlag zur Modellierung von Wissen in wissensintensiven Geschäftsprozessen. Technical report, University of Potsdam, Department of Business Informatics, esp. Processes and Systems (2016)

    Google Scholar 

  11. Gronau, N.: Process Oriented Management of Knowledge: Methods and Tools for the Employment of Knowledge as a Competitive Factor in Organizations (Wissen prozessorientiert managen: Methode und Werkzeuge für die Nutzung des Wettbewerbsfaktors Wissen in Unternehmen). Oldenbourg Verlag München (2009)

    Google Scholar 

  12. Gronau, N.: Modeling and Analyzing Knowledge Intensive Business Processes with KMDL - Comprehensive Insights into Theory and Practice. GITO mbH Verlag, Berlin (2012)

    Google Scholar 

  13. Gronau, N., Grum, M., Bender, B.: Determining the optimal level of autonomy in cyber-physical production systems. In: Proceedings of the 14th International Conference on Industrial Informatics (INDIN) (2016)

    Google Scholar 

  14. Gronau, N., Maasdorp, C.: Modeling of Organizational Knowledge and Information: Analyzing Knowledge-Intensive Business Processes with KMDL. GITO mbH Verlag, Berlin (2016)

    Google Scholar 

  15. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business Revolution. Harper Business, New York (1993)

    Google Scholar 

  16. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Imai, M.: Kaizen: The Key to Japan’s Competitive Success. McGraw-Hill/Irwin, New York City/Huntersville (1986)

    Google Scholar 

  19. Ishikawa, K.: What is Total Quality Control? The Japanese Way. Prentice-Hall Inc., Upper Saddle River (1985)

    Google Scholar 

  20. Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989). https://doi.org/10.1007/978-3-642-88163-3. ISBN 0-387-51387-6

    Book  MATH  Google Scholar 

  21. Krallmann, H., Frank, H., Gronau, N.: Systemanalyse im Unternehmen. Oldenbourg Wissenschaftsverlag (2001)

    Google Scholar 

  22. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, pp. 15–27. MIT Press, Cambridge (1988). ISBN 0-262-01097-6

    MATH  Google Scholar 

  23. Moen, R., Norman, C.: Evolution of the PDCA. Google Scholar (2006)

    Google Scholar 

  24. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, Oxford (1995)

    Google Scholar 

  25. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The design science research process: a model for producing and presenting information systems research. In: 1st International Conference on Design Science in Information Systems and Technology (DESRIST), vol. 24, no. 3, pp. 83–106 (2006)

    Google Scholar 

  26. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. Manag. Inf. Syst. 24(3), 45–78 (2007)

    Article  Google Scholar 

  27. Plaut, D.C., Nowlan, S.J., Hinton, G.E.: Experiments on learning backpropagation. Technical report CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, PA (1986)

    Google Scholar 

  28. Remus, U.: Process-oriented knowledge management. Design and modelling. Ph.D. thesis, University of Regensburg (2002)

    Google Scholar 

  29. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, pp. 586–591 (1993)

    Google Scholar 

  30. Robinson, A.J., Fallside, F.: The utility driven dynamic error propagation network. Technical report CUED/F-INFENG/TR.1, Cambridge University Engineering Department (1987)

    Google Scholar 

  31. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  Google Scholar 

  32. Rosenblatt, F.: Principles of Neurodynamics. Spartan, New York (1963)

    Google Scholar 

  33. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation, pp. 318–362. MIT Press, Cambridge (1986). ISBN 0-262-68053-X

    Google Scholar 

  34. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  35. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA (1994)

    Google Scholar 

  36. Shewhart, W.: Statistical Method from the Viewpoint of Quality Control. Dover Publications Inc., New York (1939). Edited by W. Edwards Deming

    MATH  Google Scholar 

  37. Sultanow, E., Zhou, X., Gronau, N., Cox, S.: Modeling of processes, systems and knowledge: a multi-dimensional comparison of 13 chosen methods. Int. Rev. Comput. Softw. (IRECOS) 6, 3309–3319 (2012)

    Google Scholar 

  38. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1, 339–356 (1988)

    Article  Google Scholar 

  39. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Back-propagation: Theory, Architectures and Applications, pp. 433–486. Lawrence Erlbaum Publishers, Hillsdale (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Grum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grum, M., Gronau, N. (2018). A Visionary Way to Novel Process Optimizations. In: Shishkov, B. (eds) Business Modeling and Software Design. BMSD 2017. Lecture Notes in Business Information Processing, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-319-78428-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78428-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78427-4

  • Online ISBN: 978-3-319-78428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics