Skip to main content

Exact Algorithms for the Max-Min Dispersion Problem

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Abstract

Given a set P of n elements, and a function d that assigns a non-negative real number d(pq) for each pair of elements \(p,q \in P\), we want to find a subset \(S\subseteq P\) with \(|S|=k\) such that \(\mathop {\mathrm {cost}}(S)= \min \{ d(p,q) \mid p,q \in S\}\) is maximized. This is the max-min k-dispersion problem. In this paper, exact algorithms for the max-min k-dispersion problem are studied. We first show the max-min k-dispersion problem can be solved in \(O(n^{\omega k/3} \log n)\) time. Then, we show two special cases in which we can solve the problem quickly. Namely, we study the cases where a set of n points lie on a line and where a set of n points lie on a circle (and the distance is measured by the shortest arc length on the circle). We obtain O(n)-time algorithms after sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. Comput. Surv. 30, 412–458 (1998)

    Article  Google Scholar 

  2. Akagi, T., Nakano, S.: Dispersion on the line, IPSJ SIG Technical reports, 2016-AL-158-3 (2016)

    Google Scholar 

  3. Baur, C., Fekete, S.P.: Approximation of geometric dispersion problems. In: Jansen, K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 63–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053964

    Chapter  Google Scholar 

  4. Birnbaum, B., Goldman, K.J.: An improved analysis for a greedy remote-clique algorithm using factor-revealing LPs. Algorithmica 50, 42–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex programming. In: Proceedings of SoCG 2016, pp. 26:1–26:14 (2016)

    Google Scholar 

  6. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Local search for max-sum diversification. In: Proceedings of SODA 2017, pp. 130–142 (2017)

    Google Scholar 

  7. Chandra, B., Halldorsson, M.M.: Approximation algorithms for dispersion problems. J. Algorithms 38, 438–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Book  Google Scholar 

  9. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  10. Erkut, E.: The discrete \(p\)-dispersion problem. Eur. J. Oper. Res. 46, 48–60 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fekete, S.P., Meijer, H.: Maximum dispersion and geometric maximum weight cliques. Algorithmica 38, 501–511 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    MATH  Google Scholar 

  13. Frederickson, G.: Optimal algorithms for tree partitioning. In: Proceedings of SODA 1991, pp. 168–177 (1991)

    Google Scholar 

  14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21, 133–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuby, M.J.: Programming models for facility dispersion: the \(p\)-dispersion and maxisum dispersion problems. Geogr. Anal. 19, 315–329 (1987)

    Article  Google Scholar 

  16. Lei, T.L., Church, R.L.: On the unified dispersion problem: efficient formulations and exact algorithms. Eur. J. Oper. Res. 241, 622–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp. 296–303 (2014)

    Google Scholar 

  18. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  Google Scholar 

  19. Marx, D., Sidiropoulos, A.: The limited blessing of low dimensionality: when \(1-1/d\) is the best possible exponent for \(d\)-dimensional geometric problems. In: Proceedings of SoCG 2014, pp. 67–76 (2014)

    Google Scholar 

  20. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatic Corolinae 26, 415–419 (1985)

    MathSciNet  MATH  Google Scholar 

  21. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for dispersion problems. Oper. Res. 42, 299–310 (1994)

    Article  MATH  Google Scholar 

  22. Shier, D.R.: A min-max theorem for \(p\)-center problems on a tree. Transp. Sci. 11, 243–252 (1977)

    Article  Google Scholar 

  23. Sydow, M.: Approximation guarantees for max sum and max min facility dispersion with parameterised triangle inequality and applications in result diversification. Math. Appl. 42, 241–257 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Tsai, K.-H., Wang, D.-W.: Optimal algorithms for circle partitioning. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 304–310. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0045097

    Chapter  Google Scholar 

  25. Wang, D.W., Kuo, Y.-S.: A study on two geometric location problems. Inf. Process. Lett. 28, 281–286 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akagi, T. et al. (2018). Exact Algorithms for the Max-Min Dispersion Problem. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics