Skip to main content

Trajectory Design

  • Chapter
  • First Online:
Planetary Spacecraft Navigation

Part of the book series: Space Technology Library ((SPTL,volume 37))

  • 1582 Accesses

Abstract

The problem of trajectory design requires the determination of spacecraft position and velocity as a function of time that satisfy design constraints. The constraints that must be satisfied are supplied to the trajectory designer as parameters that are generally functions of the Cartesian state. Thus, the main interest in developing solutions of the equations of motion for navigation is to enable computation of parameters that satisfy mission constraints and state vectors that may be used to initialize numerical integration for further refinement of the trajectory design. Analytic solutions of the equations of motion are of intrinsic interest because of their mathematical elegance. However, when applied to trajectory design, solutions are sought that enable the full Cartesian state to be determined with high precision and these solutions are numerical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Battin, R. H., “An Introduction to the Mathematics and Methods of Astrodynamics”, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 1999.

    MATH  Google Scholar 

  2. Belbruno, E. A., J. K. Miller, “Sun-Perturbed Earth-to-Moon Transfers with Ballistic Capture”, Vol 16, No. 4, Journal of Guidance, Control and Dynamics, July-August 1993.

    Google Scholar 

  3. Egorov, V. A., “Certain Problems of Moon Flight Dynamics,” in The Russian Literature of Satellites, Part 1, International Physical Index, Inc., New York, 1958.

    Google Scholar 

  4. Ehricke, K. A., “Space Flight”, D. Van Nostrand, Princeton, NJ, 1960.

    MATH  Google Scholar 

  5. Fesenkov, V. G., Journal of Astronomy, 23, No. 1, 1946.

    Google Scholar 

  6. Hintz, G. R., “Orbital Mechanics and Astrodynamics”, Springer International Publishing, Switzerland, 2015

    Book  Google Scholar 

  7. Miller, J. K., C. J. Weeks, and L. J. Wood, Orbit Determination Strategy and Accuracy for a Comet Rendezvous Mission. Journal of Guidance, Control and Dynamics 13, 775–784., 1990

    Article  Google Scholar 

  8. Miller, J. K., E. A. Belbruno, “A Method for the Construction of a Lunar Transfer Trajectory Using Ballistic Capture”, AAS 91–100, AAS/AIAA Spaceflight Mechanics Meeting, Houston, TX, February 11, 1991.

    Google Scholar 

  9. Miller, J. K., E. Carranza, C. E. Helfrich, W. M. Owen, B. G. Williams, D. W. Dunham, R. W. Farguhar, Y. Guo and J. V. McAdams, “Near Earth Asteroid Rendezvous Orbit Phase Trajectory Design”, AIAA 98–4286, AAS/AIAA Astrodynamics Specialist Conference, Boston, MA, August 10, 1998.

    Google Scholar 

  10. Miller, J. K. and C. J. Weeks, “Application of Tisserand’s Criterion to the Design of Gravity Assist Trajectories”, AIAA 2002–4717, AAS/AIAA Astrodynamics Specialist Conference, Monterey, CA, August 5, 2002.

    Google Scholar 

  11. Miller, J. K., “Lunar Transfer Trajectory Design and the Four Body Problem”, AAS 03–144, 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, February 9, 2003.

    Google Scholar 

  12. Miller, J. K. and G. R. Hintz, “Weak Stability Boundary and Trajectory Design”, AAS paper 15–297, AAS/AIAA Astrodynamics Specialist Conference, Vail, CO, August 9, 2015.

    Google Scholar 

  13. Roy, A, E., Orbital Motion, Adam Hilgar Ltd., Bristol, UK., 1982

    Google Scholar 

  14. Strange, N. J. and J. A. Sims, “Methods for the Design of V-Infinity Leveraging Maneuvers”, AAS paper 01–437., 2001.

    Google Scholar 

  15. Strange, N. J. and J. M. Longuski, “Graphical Methods for Gravity-Assist Trajectory Design”, Journal of Spacecraft and Rockets, Vol. 39, No. 1, January-February 2002.

    Google Scholar 

  16. Yamakawa, H., Kawaguchi, J. and Nakajima, T., “LUNAR-A Trajectory description, ” ISTS 94-c-30, 19th International Symposium on Space Technology and Science, Yokohama, Japan, May 15–24, 1994.

    Google Scholar 

  17. Yamakawa, H., Kawaguchi, J., Ishii, N. and Matsuo, H., “A Numerical Study of Gravitational Capture Orbit in the Earth-Moon System,” AAS 92–186, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, J. (2019). Trajectory Design. In: Planetary Spacecraft Navigation. Space Technology Library, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-78916-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78916-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78915-6

  • Online ISBN: 978-3-319-78916-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics