Skip to main content

Effective Thermal Conductivity of Fiber Reinforced Composites Under Orientation Clustering

  • Chapter
  • First Online:
Engineering Design Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 92))

Abstract

A parametric finite element analysis was carried out to investigate the sensitivity of the effective thermal conductivity of fibers to orientation clustering. Randomly-positioned fibers with von Mises orientation distributions were used in different considerations and volume fractions to generate the dispersion in a partitioned representative volume element. It was found that increasing the fiber volume fraction increases the thermal conductivity; this improvement is significant specially when a preferred orientation is detected with a cluster-free state. Further reinforcement of the composite is made possible by increasing the maximum principal value of the orientation tensor provided that the principal direction is set accordingly. Furthermore, clustering index does not seems to be affected by volume fraction when an equal distribution is present in partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advani, S.G., Tucker, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751–784 (1987)

    Article  Google Scholar 

  2. Advani, S.G., Tucker, C.L.: Closure approximations for three-dimensional structure tensors. J. Rheol. 34(3), 367–386 (1990)

    Article  Google Scholar 

  3. Agrawal, A., Satapathy, A.: Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int. J. Therm. Sci. 89, 203–209 (2015)

    Article  Google Scholar 

  4. Behzad, T., Sain, M.: Measurement and prediction of thermal conductivity for hemp fiber reinforced composites. Polym. Eng. Sci. 47(7), 977–983 (2007)

    Article  Google Scholar 

  5. Bertram, A., Gliige, R.: Solid mechanics. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  6. Du Chung, H., Kwon, T.H.: Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J. Rheol. 46(1), 169–194 (2002)

    Article  MathSciNet  Google Scholar 

  7. Fiedler, T., Hosseini, S., Belova, I.V., Murch, G.E., Öchsner, A.: A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures. Comput. Mater. Sci. 47(2), 314–319 (2009)

    Article  Google Scholar 

  8. Gomez-Munoz, J.L., Bravo-Castillero, J.: Calculation of effective conductivity of 2D and 3D composite materials with anisotropic constituents and different inclusion shapes in mathematica. Comput. Phys. Commun. 179(4), 275–287 (2008)

    Article  Google Scholar 

  9. Gori, F., Corasaniti, S., Ciparisse, J.F.: Theoretical prediction of the anisotropic effective thermal conductivity of composite materials. In: Proceedings of the ASME international mechanical engineering congress and exposition—2012, p. 91. ASME, New York (2013)

    Google Scholar 

  10. Hasselman, D., Johnson, L.F.: Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21(6), 508–515 (1987)

    Article  Google Scholar 

  11. Islam, M.R., Pramila, A.: Thermal conductivity of fiber reinforced composites by the fem. J. Compos. Mater. 33(18), 1699–1715 (1999)

    Article  Google Scholar 

  12. Javanbakht, Z., Öchsner, A.: Advanced finite element simulation with MSC Marc: Application of user subroutines. Springer, Cham (2017)

    Book  Google Scholar 

  13. Javanbakht, Z., Öchsner, A.: Computational statics revision course. Springer, Cham (2017)

    Google Scholar 

  14. Javanbakht, Z., Hall, W., Öchsner, A.: Automatized estimation of the effective thermal conductivity of carbon fiber reinforced composite materials. Defect Diffus. Forum 370, 177–183 (2016)

    Article  Google Scholar 

  15. Javanbakht, Z., Hall, W., Öchsner, A.: Finite element evaluation of effective thermal conductivity of short carbon nano tubes: a comparative study. Defect Diffus. Forum 372, 208–214 (2016)

    Article  Google Scholar 

  16. Javanbakht, Z., Hall, W., Öchsner, A.: The effect of partitioning on the clustering index of randomly-oriented fiber composites: a parametric study. Defect Diffus. Forum 380, 232–241 (2017)

    Article  Google Scholar 

  17. Javanbakht, Z., Hall, W., Öchsner, A.: The effect of substrate bonding on characterization of thin elastic layers: a finite element study. Materialwiss Werkst 48(5), 456–462 (2017)

    Article  Google Scholar 

  18. Javanbakht, Z., Hall, W., Öchsner, A.: Computational evaluation of transverse thermal conductivity of natural fiber composites. In: Improved Performance of Materials, pp. 197–206. Springer, Cham (2018)

    Google Scholar 

  19. Kalaprasad, G., Pradeep, P., Mathew, G., Pavithran, C., Thomas, S.: Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Key Eng. Mater. 60(16), 2967–2977 (2000)

    Google Scholar 

  20. Kalpakjian, S., Schmid, S.R.: Manufacturing engineering and technology, 6th edn. Prentice Hall, New York (2010)

    Google Scholar 

  21. Kanit, T., Forest, S., Galliet, I., Mounoury, Y., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  Google Scholar 

  22. Kari, S., Berger, H., Gabbert, U.: Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput. Mater. Sci. 39(1), 198–204 (2007)

    Article  Google Scholar 

  23. Kataoka, Y., Taya, M.: Analysis of mechanical behavior of a short fiber composite using micromechanics based model: effects of fiber clustering on composite stiffness and crack initiation. JSME Int. J. A-Solid M. 43(1), 46–52 (2000)

    Article  Google Scholar 

  24. Korab, J., Stefanik, P., Kavecky, S., Sebo, P., Korb, G.: Thermal conductivity of unidirectional copper matrix carbon fibre composites. Compos. Part A-Appl. S. 33(4), 577–581 (2002)

    Article  Google Scholar 

  25. Krause, M., Hausherr, J.M., Burgeth, B., Herrmann, C., Krenkel, W.: Determination of the fibre orientation in composites using the structure tensor and local x-ray transform. J. Mater. Sci. 45(4), 888–896 (2010)

    Article  Google Scholar 

  26. Lee, K.S., Lee, S.W., Chung, K., Kang, T.J., Youn, J.R.: Measurement and numerical simulation of three-dimensional fiber orientation states in injection- molded short-fiber-reinforced plastics. J. Appl. Polym. Sci. 88(2), 500–509 (2003)

    Article  Google Scholar 

  27. Liu, K., Takagi, H., Osugi, R., Yang, Z.: Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Key Eng. Mater. 72(5), 633–639 (2012)

    Google Scholar 

  28. Mardia, K.V., Zemroch, P.J.: Algorithm as 86: the von Mises distribution function. Appl Stat-J Roy St C 24(2), 268 (1975)

    Google Scholar 

  29. Muller, V., Bohlke, T.: Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors. Key Eng. Mater. 130, 36–45 (2016)

    Google Scholar 

  30. Nomura, S., Kawai, H., Kimura, I., Kagiyama, M.: General description of orientation factors in terms of expansion of orientation distribution function in a series of spherical harmonics. J. Polym. Sci. A-2 Polym. Phys. 8(3), 383–400 (1970)

    Article  Google Scholar 

  31. Öchsner, A.: Computational statics and dynamics: an introduction based on the finite element method. Springer, Singapore (2016)

    Book  Google Scholar 

  32. Öchsner, A.: A project-based introduction to computational statics. Springer International Publishing, Cham (2018)

    Book  Google Scholar 

  33. Öchsner, A., Merkel, M.: One-dimensional finite elements: an introduction to the FE method. Springer, Berlin (2013)

    Book  Google Scholar 

  34. Qian, L., Pang, X., Zhou, J., Yang, J., Lin, S., Hui, D.: Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials. Compos. Part B-Eng. 116, 291–297 (2016)

    Article  Google Scholar 

  35. Rakovsky, S.K.: Analytical tools and industrial applications for chemical processes and polymeric materials. Apple Academic Press, Point Pleasant (2014)

    Google Scholar 

  36. Ranganathan, S., Advani, S.G.: Characterization of orientation clustering in short-fiber composites. J. Polym. Sci. B Polym. Phys. 28(13), 2651–2672 (1990)

    Article  Google Scholar 

  37. Scheidegger, A.E.: On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data. In: Thomas Nolan, B. (ed) Geological Survey Professional Paper 525, Geological Survey Research, vol. 525, pp. 164–167, United States Government Printing Office, Washington, D.C. (1965)

    Google Scholar 

  38. Sliseris, J., Andra, H., Kabel, M., Wirjadi, O., Dix, B., Plinke, B.: Estimation of fiber orientation and fiber bundles of mdf. Mater. Struct. 49(10), 4003–4012 (2016)

    Article  Google Scholar 

  39. Tian, T., Cole, K.D.: Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials. Int J Heat Mass Tran 55(23–24), 6530–6537 (2012)

    Article  Google Scholar 

  40. Villiere, M., Lecointe, D., Sobotka, V., Boyard, N., Delaunay, D.: Experimental determination and modeling of thermal conductivity tensor of carbon/epoxy composite. Compos. Part A-Appl. S 46, 60–68 (2013)

    Article  Google Scholar 

  41. Wang, M., Kang, Q., Pan, N.: Thermal conductivity enhancement of carbon fiber composites. Appl. Therm. Eng. 29(2–3), 418–421 (2009)

    Article  Google Scholar 

  42. Yang, C., Huang, H.X., Li, K.: Investigation of fiber orientation states in injection-compression molded short-fiber-reinforced thermoplastics. Polym. Compos. 31(11), 1899–1908 (2010)

    Article  Google Scholar 

  43. Yang, R., Chen, G., Dresselhaus, M.S.: Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 72(12), 111 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Javanbakht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javanbakht, Z., Hall, W., Öchsner, A. (2019). Effective Thermal Conductivity of Fiber Reinforced Composites Under Orientation Clustering. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications. Advanced Structured Materials, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-79005-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79005-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79004-6

  • Online ISBN: 978-3-319-79005-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics