Skip to main content

Rheometry of Visco-Plastic Fluids

  • Chapter
  • First Online:
Lectures on Visco-Plastic Fluid Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 583))

Abstract

This chapter deals with experimental methods for the measurement of the rheological properties of materials, with a focus on yield stress fluids. Section 2 provides the basis of rheometry. Standard equations for viscosimetric flows are given and their application to visco-plastic fluids is discussed. The third section deals with the measurements of the main properties of simple yield stress fluids: solid viscoelastic properties, yield stress, and visco-plastic properties. The fourth section is devoted to the measurements of the properties of thixotropic yield stress fluids, with a focus on the dependence of their behaviour on shear history and on their aging at rest. The phenomena of shear localisation and shear banding are finally discussed in the fifth section, together with possible material inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity, the discussion in this section is based on the case of simple constitutive laws of the form \( \tau_{ij} = f(d_{ij} ) \). This can be easily generalised to cases where the behaviour also depends on the strain tensor and on the strain history.

  2. 2.

    When the behaviour is nonlinear, the response is not sinusoidal, though one can still define \( G^{\prime } \) and \( G^{\prime \prime } \) through Fourier analysis: they are the coefficients of the first harmonic in the Fourier series decomposition of the response \( \tau (t) \) (for details see Wilhelm et al. 1998; Ewoldt et al. 2008). In this case, while \( G^{\prime \prime } \) still encodes all the dissipative properties of the material, \( G^{\prime } \) has in general no simple quantitative meaning.

References

  • Acrivos, A., Mauri, R., & Fan, X. (1993). Shear-induced resuspension in a Couette device. International Journal of Multiphase Flow, 19, 797–802.

    Article  Google Scholar 

  • Alderman, N. J., Meeten, G. H., & Sherwood, J. D. (1991). Vane rheometry of bentonite gels. Journal of Non-Newtonian Fluid Mechanics, 39, 291–310.

    Article  Google Scholar 

  • Altobelli, S. A., Fukushima, E., & Mondy, L. A. (1997). Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion. Journal of Rheology, 41, 1105–1115.

    Article  Google Scholar 

  • Balmforth, N., Frigaard, I., & Ovarlez, G. (2014). Yielding to stress: Recent developments in viscoplastic fluid mechanics. Annual Review of Fluid Mechanics, 46, 121–146.

    Article  MathSciNet  Google Scholar 

  • Baravian, C., Lalante, A., & Parker, A. (2002). Vane rheometry with a large, finite gap. Applied Rheology, 12, 81–87.

    Google Scholar 

  • Barentin, C., Azanza, E., & Pouligny, B. (2004). Flow and segregation in sheared granular slurries. Europhysics Letters, 66, 139–145.

    Article  Google Scholar 

  • Barnes, H. A., & Carnali, J. O. (1990). The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. Journal of Rheology, 34, 841–866.

    Article  Google Scholar 

  • Barnes, H. A., & Nguyen, Q. D. (2001). Rotating vane rheometry—a review. Journal of Non-Newtonian Fluid Mechanics, 98, 1–14.

    Article  Google Scholar 

  • Bousmina, M., Aït-Kadi, A., & Faisant, J. B. (1999). Determination of shear rate and viscosity from batch mixer data. Journal of Rheology, 43, 415–433.

    Article  Google Scholar 

  • Boyer, F., Pouliquen, O., & Guazzelli, É. (2011). Dense suspensions in rotating-rod flows: Normal stresses and particle migration. Journal of Fluid Mechanics, 686, 5–25.

    Article  Google Scholar 

  • Chow, A. W., Sinton, S. W., Iwamiya, J. H., & Stephens, T. S. (1994). Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Physics of Fluids, 6, 2561–2576.

    Article  Google Scholar 

  • Coussot, P. (2005). Rheometry of pastes, suspensions and granular materials. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Coussot, P., Nguyen, Q. D., Huynh, H. T., & Bonn, D. (2002). Viscosity bifurcation in thixotropic, yielding fluids. Journal of Rheology, 46, 573–589.

    Article  Google Scholar 

  • Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L., & Ovarlez, G. (2006). Aging and solid or liquid behavior in pastes. Journal of Rheology, 50, 975–994.

    Article  Google Scholar 

  • Coussot, P., Tocquer, L., Lanos, C., & Ovarlez, G. (2009). Macroscopic versus local rheology of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 158, 85–90.

    Article  Google Scholar 

  • Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y., & Morris, J. F. (2009). Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy. Physical Review Letters, 102, 108301.

    Article  Google Scholar 

  • Derec, C., Ducouret, G., Ajdari, A., & Lequeux, F. (2003). Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles. Physical Review E, 67, 061403.

    Article  Google Scholar 

  • Dullaert, K., & Mewis, J. (2005). Thixotropy: Build-up and breakdown curves during flow. Journal of Rheology, 49, 1213–1230.

    Article  Google Scholar 

  • Estellé, P., Lanos, C., Perrot, A., & Amziane, S. (2008). Processing the vane shear flow data from Couette analogy. Applied Rheology, 18, 34037–34481.

    Google Scholar 

  • Ewoldt, R. H., Hosoi, A. E., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52, 1427–1458.

    Article  Google Scholar 

  • Fall, A., Lemaître, A., Bertrand, F., Bonn, D., & Ovarlez, G. (2010). Shear thickening and migration in granular suspensions. Physical Review Letters, 105, 268303.

    Article  Google Scholar 

  • Fall, A., Bertrand, F., Hautemayou, D., Mezière, C., Moucheront, P., Lemaître, A., et al. (2015). Macroscopic discontinuous shear thickening versus local shear jamming in cornstarch. Physical Review Letters, 114, 098301.

    Article  Google Scholar 

  • Ferraris, C. F., & Brower, L. E. (2001). Comparison of concrete rheometers: International tests at LCPC (Nantes, France) in October, 2000. National Institute of Standards and Technology Interagency Report (NISTIR) 6819.

    Google Scholar 

  • Ferraris, C. F., & Brower, L. E. (2004). Comparison of concrete rheometers: International tests at MB (Cleveland OH, USA) in May, 2003. National Institute of Standards and Technology Interagency Report (NISTIR) 7154.

    Google Scholar 

  • Hafid, H., Ovarlez, G., Toussaint, F., Jezequel, P. H., & Roussel, N. (2015). Assessment of potential concrete and mortar rheometry artifacts using magnetic resonance imaging. Cement and Concrete Research, 71, 29–35.

    Article  Google Scholar 

  • Jarny, S., Roussel, N., Rodts, S., Le Roy, R., & Coussot, P. (2005). Rheological behavior of cement pastes from MRI velocimetry. Cement and Concrete Research, 35, 1873–1881.

    Article  Google Scholar 

  • Jarny, S., Roussel, N., Le Roy, R., & Coussot, P. (2008). Modelling thixotropic behavior of fresh cement pastes from MRI measurements. Cement and Concrete Research, 38, 616–623.

    Article  Google Scholar 

  • Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441, 727–730.

    Article  Google Scholar 

  • Keentok, M., Milthorpe J. F., & ODonovan, E. (1985). On the shearing zone around rotating vanes in plastic liquids: Theory and experiment. Journal of Non-Newtonian Fluid Mechanics, 17:23–35.

    Article  Google Scholar 

  • Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. A. (2006). New, portable rheometer for fresh self-consolidating concrete. ACI Materials Journal, 233, 97–116.

    Google Scholar 

  • Leighton, D., & Acrivos, A. (1987). Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. Journal of Fluid Mechanics, 177, 109–131.

    Article  Google Scholar 

  • Lhuillier, D. (2009). Migration of rigid particles in non-Brownian viscous suspensions. Physics of Fluids, 21, 023302.

    Article  Google Scholar 

  • Macosko, C. W. (1994). Rheology: Principles, measurements, and applications. New York: Wiley.

    Google Scholar 

  • Mahaut, F., Chateau, X., Coussot, P., & Ovarlez, G. (2008a). Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology, 52, 287–313.

    Article  Google Scholar 

  • Mahaut, F., Mokéddem, S., Chateau, X., Roussel, N., & Ovarlez, G. (2008b). Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research, 38, 1276–1285.

    Article  Google Scholar 

  • Manneville, S., Becu, L., & Colin, A. (2004). High-frequency ultrasonic speckle velocimetry in sheared complex fluids. The European Physical Journal Applied Physics, 28, 361–373.

    Article  Google Scholar 

  • Merhi, D., Lemaire, E., Bossis, G., & Moukalled, F. (2005). Particle migration in a concentrated suspension flowing between rotating parallel plates: Investigation of diffusion flux coefficients. Journal of Rheology, 49, 1429–1448.

    Article  Google Scholar 

  • Morris, J. F., & Boulay, F. (1999). Curvilinear flows of noncolloidal suspensions: The role of normal stresses. Journal of Rheology, 43, 1213–1237.

    Article  Google Scholar 

  • Mujumdar, A., Beris, A. N., & Metzner, A. B. (2002). Transient phenomena in thixotropic systems. Journal of Non-Newtonian Fluid Mechanics, 102, 157–178.

    Article  Google Scholar 

  • Nguyen, Q. D., & Boger, D. V. (1992). Measuring the flow properties of yield stress fluids. Annual Review of Fluid Mechanics, 24, 47–88.

    Article  Google Scholar 

  • Ovarlez, G., & Chateau, X. (2008). Influence of shear stress applied during flow stoppage and rest period on the mechanical properties of thixotropic suspensions. Physical Review E, 77, 061403.

    Article  Google Scholar 

  • Ovarlez, G., Bertrand, F., & Rodts, S. (2006). Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. Journal of Rheology, 50, 259–292.

    Article  Google Scholar 

  • Ovarlez, G., Rodts, S., Ragouilliaux, A., Coussot, P., Goyon, J., & Colin, A. (2008). Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Physical Review E, 78, 036307.

    Article  Google Scholar 

  • Ovarlez, G., Rodts, S., Chateau, X., & Coussot, P. (2009). Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheologica Acta, 48, 831–844.

    Article  Google Scholar 

  • Ovarlez, G., Barral, Q., & Coussot, P. (2010). Three-dimensional jamming and flows of soft glassy materials. Nature Materials, 9, 115–119.

    Article  Google Scholar 

  • Ovarlez, G., Mahaut, F., Bertrand, F., & Chateau, X. (2011). Flows and heterogeneities with a vane tool: MRI measurements. Journal of Rheology, 55, 197–223.

    Article  Google Scholar 

  • Ovarlez, G. (2011). Introduction to the rheometry of complex suspensions. In N. Roussel (Ed.), Understanding the rheology of concrete. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Ovarlez, G., Bertrand, F., Coussot, P., & Chateau, X. (2012). Shear-induced sedimentation in yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 177, 19–28.

    Article  Google Scholar 

  • Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J., & Coussot, P. (2013). On the existence of a simple yield stress fluid behavior. Journal of Non-Newtonian Fluid Mechanics, 193, 68–79.

    Article  Google Scholar 

  • Ovarlez, G., Mahaut, F., Deboeuf, S., Lenoir, N., Hormozi, S., & Chateau, X. (2015). Flows of suspensions of particles in yield stress fluids. Journal of Rheology, 59, 1449–1486.

    Article  Google Scholar 

  • Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L., & Abbott, J. R. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids, 4, 30–40.

    Article  Google Scholar 

  • Raynaud, J. S., Moucheront, P., Baudez, J. C., Bertrand, F., Guilbaud, J. P., & Coussot, P. (2002). Direct determination by NMR of the thixotropic and yielding behavior of suspensions. Journal of Rheology, 46, 709–732.

    Article  Google Scholar 

  • Rodts, S., Bertrand, F., Jarny, S., Poullain, P., & Moucheront, P. (2004). Développements récents dans lapplication de lIRM à la rhéologie et à la mécanique des fluides. Comptes Rendus Chimie, 7, 275–282.

    Article  Google Scholar 

  • Roussel, N., Le Roy, R., & Coussot, P. (2004). Thixotropy modelling at local and macroscopic scales. Journal of Non-Newtonian Fluid Mechanics, 117, 85–95.

    Article  Google Scholar 

  • Roussel, N., Ovarlez, G., Garrault, S., & Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42, 148–157.

    Article  Google Scholar 

  • Rueb, C. J., & Zukoski, C. F. (1997). Viscoelastic properties of colloidal gels. Journal of Rheology, 41, 197–218.

    Article  Google Scholar 

  • Saak, A. W., Jennings, H. M., & Shah, S. P. (2001). The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cement and Concrete Research, 31, 205–212.

    Article  Google Scholar 

  • Salmon, J. B., Manneville, S., Colin, A., & Pouligny, B. (2003). An optical fiber based interferometer to measure velocity profiles in sheared complex fluids. The European Physical Journal Applied Physics, 22, 1436154.

    Article  Google Scholar 

  • Savarmand, S., Heniche, M., Bechard, V., Bertrand, F., & Carreau, P. J. (2007). Analysis of the vane rheometer using 3D finite element simulation. Journal of Rheology, 51, 161–177.

    Article  Google Scholar 

  • Sherwood, J. D., & Meeten, G. H. (1991). The use of the vane to measure the shear modulus of linear elastic solids. Journal of Non-Newtonian Fluid Mechanics, 41, 101–118.

    Article  Google Scholar 

  • Sinton, S. W., & Chow, A. W. (1991). NMR flow imaging of fluids and solid suspensions in Poiseuille flow. Journal of Rheology, 35, 735–772.

    Article  Google Scholar 

  • de Souza Mendes, P. R. (2009). Modeling the thixotropic behavior of structured fluids. Journal of Non-Newtonian Fluid Mechanics, 164, 66–75.

    Article  Google Scholar 

  • Tehrani, M. A. (1996). An experimental study of particle migration in pipe flow of viscoelastic fluids. Journal of Rheology, 40, 1057–1077.

    Article  Google Scholar 

  • Toorman, E. A. (1997). Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheologica Acta, 36, 56–65.

    Article  Google Scholar 

  • Viasnoff, V., & Lequeux, F. (2002). Rejuvenation and overaging in a colloidal glass under shear. Physical Review Letters, 89, 065701.

    Article  Google Scholar 

  • Wallevik, J. E. (2008). Minimizing end-effects in the coaxial cylinders viscometer: Viscoplastic flow inside the ConTec BML Viscometer 3. Journal of Non-Newtonian Fluid Mechanics, 155, 116–123.

    Article  Google Scholar 

  • Wilhelm, M., Maring, D., & Spiess, H. W. (1998). Fourier-transform rheology. Rheologica Acta, 37, 399–405.

    Article  Google Scholar 

  • Yan, J., & James, A. E. (1997). The yield surface of viscoelastic and plastic fluids in a vane viscometer. Journal of Non-Newtonian Fluid Mechanics, 70, 237–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ovarlez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ovarlez, G. (2019). Rheometry of Visco-Plastic Fluids. In: Ovarlez, G., Hormozi, S. (eds) Lectures on Visco-Plastic Fluid Mechanics. CISM International Centre for Mechanical Sciences, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-89438-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89438-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89437-9

  • Online ISBN: 978-3-319-89438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics