Skip to main content

Functional Neurosurgery for Sequelae of Traumatic Brain Injury

  • Chapter
  • First Online:
Controversies in Severe Traumatic Brain Injury Management

Abstract

Traumatic brain injury represents a significant public health problem in the USA as well as worldwide. Post-TBI disability can include both motor (tremor, dystonia, paresis) and cognitive (depression, memory, epilepsy, disorders of consciousness, and arousal) domains. Current therapies include physical, occupational, and cognitive rehabilitation, but pharmacologic and surgical treatments are lacking and are areas of intense interest. In this chapter, we will explore the functional treatments for TBI, both noninvasive and invasive, the underlying pathologic mechanisms, and future directions and applications of functional technology for augmentation of recovery after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

Auditory brainstem responses

BDNF:

Brain-derived neurotrophic factor

CM:

Centromedian thalamus

DBS:

Deep brain stimulation

EEG:

Electroencephalogram

ET:

Essential tremor

GPi:

Globus pallidus internal nucleus

ITP:

Interthalamic peduncle

LTP:

Long-term potentiation

MCS:

Minimally conscious state

NAcc:

Nucleus accumbens

NGF:

Nerve growth factor

RMNS:

Right median nerve electrical stimulation

SCC:

Subgenual cingulate cortex

SCS:

Spinal cord stimulation

SSEP:

Somatosensory evoked potentials

STN:

Subthalamic nucleus

TBI:

Traumatic brain injury

tDCS:

Transcranial direct-current stimulation

TMS:

Transcranial magnetic stimulation

VC/VS:

Ventral capsule/ventral striatum

VIM:

Ventral intermediate nucleus

VOA:

Ventral oral anterior nucleus

VOP:

Ventral oral posterior nucleus

VPL:

Ventroposterolateral nucleus

VS:

Vegetative state

References

  1. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14(6):602–15.

    Article  CAS  PubMed  Google Scholar 

  2. Guerrero JL, Thurman DJ, Sniezek JE. Emergency department visits associated with traumatic brain injury: United States, 1995–1996. Brain Inj. 2000;14(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  3. Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E. Incidence and lifetime costs of injuries in the United States. Inj Prev. 2006;12(4):212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anonymous. Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation. Atlanta, GA: Centers for Disease Control and Prevention, Prevention NCfIPaCDoUI.

    Google Scholar 

  5. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24(2):133–50.

    Article  PubMed  Google Scholar 

  6. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–18.

    Article  CAS  PubMed  Google Scholar 

  7. Syntichaki P, Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci. 2003;4(8):672–84.

    Article  CAS  PubMed  Google Scholar 

  8. Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371(26):2467–76.

    Article  PubMed  CAS  Google Scholar 

  9. Anonymous. http://www.darpa.mil/program/our-research/darpa-and-the-brain-initiative.

  10. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.

    Article  PubMed  Google Scholar 

  11. Shah PP, Szaflarski JP, Allendorfer J, Hamilton RH. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation. Front Hum Neurosci. 2013;7:888.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  13. Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65(3):466–8.

    Article  PubMed  Google Scholar 

  14. Louise-Bender Pape T, Rosenow J, Lewis G, Ahmed G, Walker M, Guernon A, et al. Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery. Brain Stimul. 2009;2(1):22–35.

    Article  PubMed  Google Scholar 

  15. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology. 2005;64(10):1802–4.

    Article  CAS  PubMed  Google Scholar 

  16. Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ, et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke. 2006;37(8):2115–22.

    Article  PubMed  Google Scholar 

  17. Tohyama T, Fujiwara T, Matsumoto J, Honaga K, Ushiba J, Tsuji T, et al. Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation in a patient with severe hemiparetic stroke: a case report. Keio J Med. 2011;60(4):114–8.

    Article  PubMed  Google Scholar 

  18. Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boroojerdi B, Diefenbach K, Ferbert A. Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci. 1996;144(1–2):160–70.

    Article  CAS  PubMed  Google Scholar 

  20. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.

    Article  PubMed  Google Scholar 

  21. Classen J, Schnitzler A, Binkofski F, Werhahn KJ, Kim YS, Kessler KR, et al. The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain. 1997;120(Pt 4):605–19.

    Article  PubMed  Google Scholar 

  22. Fregni F, Pascual-Leone A. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn Behav Neurol. 2006;19(1):21–33.

    Article  PubMed  Google Scholar 

  23. Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther. 2012;133(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  24. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational fem study of factors altering cortical current flow. NeuroImage. 2010;52(4):1268–78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tofts PS. The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol. 1990;35(8):1119–28.

    Article  CAS  PubMed  Google Scholar 

  26. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27(4):274–92.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cosentino G, Giglia G, Palermo A, Panetta ML, Lo Baido R, Brighina F, et al. A case of post-traumatic complex auditory hallucinosis treated with rTMS. Neurocase. 2010;16(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  28. Kang EK, Kim DY, Paik NJ. Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J Rehabil Med. 2012;44(4):346–50.

    Article  PubMed  Google Scholar 

  29. Bonni S, Mastropasqua C, Bozzali M, Caltagirone C, Koch G. Theta burst stimulation improves visuo-spatial attention in a patient with traumatic brain injury. Neurol Sci. 2013;34(11):2053–6.

    Article  PubMed  Google Scholar 

  30. Kreuzer PM, Landgrebe M, Frank E, Langguth B. Repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus after traumatic brain injury: a case study. J Head Trauma Rehabil. 2013;28(5):386–9.

    Article  PubMed  Google Scholar 

  31. Pistoia F, Sacco S, Carolei A, Sara M. Corticomotor facilitation in vegetative state: results of a pilot study. Arch Phys Med Rehabil. 2013;94(8):1599–606.

    Article  PubMed  Google Scholar 

  32. Lesniak M, Polanowska K, Seniow J, Czlonkowska A. Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J Head Trauma Rehabil. 2014;29(3):E20–9.

    Article  PubMed  Google Scholar 

  33. Angelakis E, Liouta E, Andreadis N, Korfias S, Ktonas P, Stranjalis G, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95(2):283–9.

    Article  PubMed  Google Scholar 

  34. Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S. tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology. 2014;82(13):1112–8.

    Article  PubMed  Google Scholar 

  35. Middleton A, Fritz SL, Liuzzo DM, Newman-Norlund R, Herter TM. Using clinical and robotic assessment tools to examine the feasibility of pairing tDCS with upper extremity physical therapy in patients with stroke and TBI: a consideration-of-concept pilot study. NeuroRehabilitation. 2014;35(4):741–54.

    PubMed  PubMed Central  Google Scholar 

  36. Nielson DM, McKnight CA, Patel RN, Kalnin AJ, Mysiw WJ. Preliminary guidelines for safe and effective use of repetitive transcranial magnetic stimulation in moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 2015;96(4 Suppl):S138–44.

    Article  PubMed  Google Scholar 

  37. Koski L, Kolivakis T, Yu C, Chen JK, Delaney S, Ptito A. Noninvasive brain stimulation for persistent postconcussion symptoms in mild traumatic brain injury. J Neurotrauma. 2015;32(1):38–44.

    Article  PubMed  Google Scholar 

  38. Ulam F, Shelton C, Richards L, Davis L, Hunter B, Fregni F, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol. 2015;126(3):486–96.

    Article  CAS  PubMed  Google Scholar 

  39. Naro A, Calabro RS, Russo M, Leo A, Pollicino P, Quartarone A, et al. Can transcranial direct current stimulation be useful in differentiating unresponsive wakefulness syndrome from minimally conscious state patients? Restor Neurol Neurosci. 2015;33(2):159–76.

    PubMed  Google Scholar 

  40. Fecteau S, Dickler M, Pelayo R, Kumru H, Bernabeu M, Opisso Salleras E, et al. Cortical excitability during passive action observation in hospitalized adults with subacute moderate to severe traumatic brain injury: a preliminary TMS study. Neurorehabil Neural Repair. 2015;29(6):548–56.

    Article  PubMed  Google Scholar 

  41. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res. 2003;25(8):801–10.

    Article  PubMed  Google Scholar 

  42. Yoon YS, Yu KP, Kim H, Kim HI, Kwak SH, Kim BO. The effect of electric cortical stimulation after focal traumatic brain injury in rats. Ann Rehabil Med. 2012;36(5):596–608.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res. 2003;25(8):789–93.

    Article  PubMed  Google Scholar 

  44. Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA. Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res. 2003;25(8):794–800.

    Article  PubMed  Google Scholar 

  45. Zheng J, Liu L, Xue X, Li H, Wang S, Cao Y, et al. Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Res. 2013;1504:25–34.

    Article  CAS  PubMed  Google Scholar 

  46. Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol Res. 2003;25(8):780–8.

    Article  PubMed  Google Scholar 

  47. Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery. 2006;58(3):464–73.

    Article  PubMed  Google Scholar 

  48. Levy R, Ruland S, Weinand M, Lowry D, Dafer R, Bakay R. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg. 2008;108(4):707–14.

    Article  PubMed  Google Scholar 

  49. Huang M, Harvey RL, Stoykov ME, Ruland S, Weinand M, Lowry D, et al. Cortical stimulation for upper limb recovery following ischemic stroke: a small phase ii pilot study of a fully implanted stimulator. Top Stroke Rehabil. 2008;15(2):160–72.

    Article  PubMed  Google Scholar 

  50. Levy RM, Harvey RL, Kissela BM, Winstein CJ, Lutsep HL, Parrish TB, et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded Everest trial. Neurorehabil Neural Repair. 2016;30(2):107–19.

    Article  PubMed  Google Scholar 

  51. Katayama Y, Tsubokawa T, Yamamoto T. Chronic motor cortex stimulation for central deafferentation pain: experience with bulbar pain secondary to Wallenberg syndrome. Stereotact Funct Neurosurg. 1994;62(1–4):295–9.

    Article  CAS  PubMed  Google Scholar 

  52. Meyerson BA, Lindblom U, Linderoth B, Lind G, Herregodts P. Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta Neurochir Suppl (Wien). 1993;58:150–3.

    CAS  Google Scholar 

  53. Nguyen JP, Keravel Y, Feve A, Uchiyama T, Cesaro P, Le Guerinel C, et al. Treatment of deafferentation pain by chronic stimulation of the motor cortex: report of a series of 20 cases. Acta Neurochir Suppl. 1997;68:54–60.

    CAS  PubMed  Google Scholar 

  54. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg. 1993;78(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  55. Fontaine D, Hamani C, Lozano A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. J Neurosurg. 2009;110(2):251–6.

    Article  PubMed  Google Scholar 

  56. Nardone R, Holler Y, Leis S, Holler P, Thon N, Thomschewski A, et al. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: a review. J Spinal Cord Med. 2014;37(1):19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bittar RG, Kar-Purkayastha I, Owen SL, Bear RE, Green A, Wang SY, et al. Deep brain stimulation for pain relief: a meta-analysis. J Clin Neurosci. 2005;12(5):515–9.

    Article  PubMed  Google Scholar 

  58. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22.

    Article  CAS  PubMed  Google Scholar 

  60. Deep-Brain Stimulation for Parkinson’s Disease Study G, Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.

    Article  Google Scholar 

  61. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352(5):459–67.

    Article  CAS  PubMed  Google Scholar 

  62. Tabansky I, Quinkert AW, Rahman N, Muller SZ, Lofgren J, Rudling J, et al. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res. 2014;273:123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broggi G, Brock S, Franzini A, Geminiani G. A case of posttraumatic tremor treated by chronic stimulation of the thalamus. Mov Disord. 1993;8(2):206–8.

    Article  CAS  PubMed  Google Scholar 

  64. Nguyen JP, Degos JD. Thalamic stimulation and proximal tremor. A specific target in the nucleus ventrointermedius thalami. Arch Neurol. 1993;50(5):498–500.

    Article  CAS  PubMed  Google Scholar 

  65. Sellal F, Hirsch E, Barth P, Blond S, Marescaux C. A case of symptomatic hemidystonia improved by ventroposterolateral thalamic electrostimulation. Mov Disord. 1993;8(4):515–8.

    Article  CAS  PubMed  Google Scholar 

  66. Loher TJ, Hasdemir MG, Burgunder JM, Krauss JK. Long-term follow-up study of chronic globus pallidus internus stimulation for posttraumatic hemidystonia. J Neurosurg. 2000;92(3):457–60.

    Article  CAS  PubMed  Google Scholar 

  67. Umemura A, Samadani U, Jaggi JL, Hurtig HI, Baltuch GH. Thalamic deep brain stimulation for posttraumatic action tremor. Clin Neurol Neurosurg. 2004;106(4):280–3.

    Article  PubMed  Google Scholar 

  68. Green AAT. Deep brain stimulation for post traumatic tremor. ACNR. 2005;5(1):38.

    Google Scholar 

  69. Capelle HH, Grips E, Weigel R, Blahak C, Hansjorg B, Wohrle JC, et al. Posttraumatic peripherally-induced dystonia and multifocal deep brain stimulation: case report. Neurosurgery. 2006;59(3):E702; discussion E702.

    Article  PubMed  Google Scholar 

  70. Foote KD, Seignourel P, Fernandez HH, Romrell J, Whidden E, Jacobson C, et al. Dual electrode thalamic deep brain stimulation for the treatment of posttraumatic and multiple sclerosis tremor. Neurosurgery. 2006;58(4 Suppl 2):ONS-280-285; discussion ONS-285-286.

    Google Scholar 

  71. Broggi GFA, Tringali G, Ferroli P, Marras C, et al. Deep brain stimulation as a functional scalpel. In: Chang JWKY, Yamamoto T, editors. Advances in functional and reparative neurosurgery. Vienna: Springer; 2006. p. 9–13.

    Google Scholar 

  72. Kuhn J, Lenartz D, Mai JK, Huff W, Klosterkoetter J, Sturm V. Disappearance of self-aggressive behavior in a brain-injured patient after deep brain stimulation of the hypothalamus: technical case report. Neurosurgery. 2008;62(5):E1182; discussion E1182.

    Article  PubMed  Google Scholar 

  73. Franzini A, Cordella R, Messina G, Marras CE, Romito LM, Carella F, et al. Deep brain stimulation for movement disorders. Considerations on 276 consecutive patients. J Neural Transm (Vienna). 2011;118(10):1497–510.

    Article  Google Scholar 

  74. Reese R, Herzog J, Falk D, Lutzen U, Pinsker MO, Mehdorn HM, et al. Successful deep brain stimulation in a case of posttraumatic tremor and hemiparkinsonism. Mov Disord. 2011;26(10):1954–5.

    Article  PubMed  Google Scholar 

  75. Kim JP, Chang WS, Chang JW. The long-term surgical outcomes of secondary hemidystonia associated with post-traumatic brain injury. Acta Neurochir. 2012;154(5):823–30.

    Article  PubMed  Google Scholar 

  76. Issar NM, Hedera P, Phibbs FT, Konrad PE, Neimat JS. Treating post-traumatic tremor with deep brain stimulation: report of five cases. Parkinsonism Relat Disord. 2013;19(12):1100–5.

    Article  PubMed  Google Scholar 

  77. Carvalho KS, Sukul VV, Bookland MJ, Koch SA, Connolly PJ. Deep brain stimulation of the globus pallidus suppresses post-traumatic dystonic tremor. J Clin Neurosci. 2014;21(1):153–5.

    Article  PubMed  Google Scholar 

  78. Follett MA, Torres-Russotto D, Follett KA. Bilateral deep brain stimulation of the ventral intermediate nucleus of the thalamus for posttraumatic midbrain tremor. Neuromodulation. 2014;17(3):289–91.

    Article  PubMed  Google Scholar 

  79. Louis ED, Lynch T, Ford B, Greene P, Bressman SB, Fahn S. Delayed-onset cerebellar syndrome. Arch Neurol. 1996;53(5):450–4.

    Article  CAS  PubMed  Google Scholar 

  80. Krauss JK, Jankovic J. Head injury and posttraumatic movement disorders. Neurosurgery. 2002;50(5):927–939; discussion 939-940.

    PubMed  Google Scholar 

  81. Foote KD, Okun MS. Ventralis intermedius plus ventralis oralis anterior and posterior deep brain stimulation for posttraumatic holmes tremor: two leads may be better than one: technical note. Neurosurgery. 2005;56(2 Suppl):E445; discussion E445.

    PubMed  Google Scholar 

  82. Krauss JK, Mohadjer M, Braus DF, Wakhloo AK, Nobbe F, Mundinger F. Dystonia following head trauma: a report of nine patients and review of the literature. Mov Disord. 1992;7(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  83. Silver JK, Lux WE. Early onset dystonia following traumatic brain injury. Arch Phys Med Rehabil. 1994;75(8):885–8.

    Article  CAS  PubMed  Google Scholar 

  84. Chuang C, Fahn S, Frucht SJ. The natural history and treatment of acquired hemidystonia: report of 33 cases and review of the literature. J Neurol Neurosurg Psychiatry. 2002;72(1):59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krauss JK, Trankle R, Raabe A. Tremor and dystonia after penetrating diencephalic-mesencephalic trauma. Parkinsonism Relat Disord. 1997;3(2):117–9.

    Article  CAS  PubMed  Google Scholar 

  86. King RB, Fuller C, Collins GH. Delayed onset of hemidystonia and hemiballismus following head injury: a clinicopathological correlation. Case report. J Neurosurg. 2001;94(2):309–14.

    Article  CAS  PubMed  Google Scholar 

  87. Constantoyannis C, Kagadis GC, Ellul J, Kefalopoulou Z, Chroni E. Nucleus ventralis oralis deep brain stimulation in postanoxic dystonia. Mov Disord. 2009;24(2):306–8.

    Article  PubMed  Google Scholar 

  88. Katsakiori PF, Kefalopoulou Z, Markaki E, Paschali A, Ellul J, Kagadis GC, et al. Deep brain stimulation for secondary dystonia: results in 8 patients. Acta Neurochir. 2009;151(5):473–8; discussion 478.

    Article  CAS  PubMed  Google Scholar 

  89. Ghika J, Villemure JG, Miklossy J, Temperli P, Pralong E, Christen-Zaech S, et al. Postanoxic generalized dystonia improved by bilateral VOA thalamic deep brain stimulation. Neurology. 2002;58(2):311–3.

    Article  CAS  PubMed  Google Scholar 

  90. Peran P, Catani S, Falletta Caravasso C, Nemmi F, Sabatini U, Formisano R. Supplementary motor area activation is impaired in severe traumatic brain injury parkinsonism. J Neurotrauma. 2014;31(7):642–8.

    Article  PubMed  Google Scholar 

  91. Wong JC, Hazrati LN. Parkinson’s disease, parkinsonism, and traumatic brain injury. Crit Rev Clin Lab Sci. 2013;50(4–5):103–6.

    Article  PubMed  Google Scholar 

  92. Medina J, Norise C, Faseyitan O, Coslett HB, Turkeltaub PE, Hamilton RH. Finding the right words: transcranial magnetic stimulation improves discourse productivity in non-fluent aphasia after stroke. Aphasiology. 2012;26(9):1153–68.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang. 2005;93(1):95–105.

    Article  PubMed  Google Scholar 

  94. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  95. Ohyama M, Senda M, Kitamura S, Ishii K, Mishina M, Terashi A. Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A pet activation study. Stroke. 1996;27(5):897–903.

    Article  CAS  PubMed  Google Scholar 

  96. Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009;88(5):404–9.

    Article  PubMed  Google Scholar 

  97. Fitzgerald PB, Hoy KE, Maller JJ, Herring S, Segrave R, McQueen S, et al. Transcranial magnetic stimulation for depression after a traumatic brain injury: a case study. J ECT. 2011;27(1):38–40.

    Article  PubMed  Google Scholar 

  98. Cooper EB, Cooper JB. Electrical treatment of coma via the median nerve. Acta Neurochir Suppl. 2003;87:7–10.

    CAS  PubMed  Google Scholar 

  99. Cooper JB, Jane JA, Alves WM, Cooper EB. Right median nerve electrical stimulation to hasten awakening from coma. Brain Inj. 1999;13(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  100. Lei J, Wang L, Gao G, Cooper E, Jiang J. Right median nerve electrical stimulation for acute traumatic coma patients. J Neurotrauma. 2015;32(20):1584–9.

    Article  PubMed  Google Scholar 

  101. Peri CV, Shaffrey ME, Farace E, Cooper E, Alves WM, Cooper JB, et al. Pilot study of electrical stimulation on median nerve in comatose severe brain injured patients: 3-month outcome. Brain Inj. 2001;15(10):903–10.

    Article  CAS  PubMed  Google Scholar 

  102. Hassler R, Ore GD, Bricolo A, Dieckmann G, Dolce G. EEG and clinical arousal induced by bilateral long-term stimulation of pallidal systems in traumatic vigil coma. Electroencephalogr Clin Neurophysiol. 1969;27(7):689–90.

    CAS  PubMed  Google Scholar 

  103. Tsubokawa T, Yamamoto T, Katayama Y, Hirayama T, Maejima S, Moriya T. Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj. 1990;4(4):315–27.

    Article  CAS  PubMed  Google Scholar 

  104. Yamamoto T, Kobayashi K, Kasai M, Oshima H, Fukaya C, Katayama Y. DBS therapy for the vegetative state and minimally conscious state. Acta Neurochir Suppl. 2005;93:101–4.

    Article  CAS  PubMed  Google Scholar 

  105. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–3.

    Article  CAS  PubMed  Google Scholar 

  106. Giacino J, Fins JJ, Machado A, Schiff ND. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation. 2012;15(4):339–49.

    Article  PubMed  Google Scholar 

  107. Rezai AR, Sederberg PB, Bogner J, Nielson DM, Zhang J, Mysiw WJ, et al. Improved function after deep brain stimulation for chronic, severe traumatic brain injury. Neurosurgery. 2016;79(2):204–11.

    Article  PubMed  Google Scholar 

  108. Ritter AC, Wagner AK, Fabio A, Pugh MJ, Walker WC, Szaflarski JP, et al. Incidence and risk factors of posttraumatic seizures following traumatic brain injury: a traumatic brain injury model systems study. Epilepsia. 2016;57(12):1968–77.

    Article  PubMed  Google Scholar 

  109. Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  110. Larkin M, Meyer RM, Szuflita NS, Severson MA, Levine ZT. Post-traumatic, drug-resistant epilepsy and review of seizure control outcomes from blinded, randomized controlled trials of brain stimulation treatments for drug-resistant epilepsy. Cureus. 2016;8(8):e744.

    PubMed  PubMed Central  Google Scholar 

  111. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908.

    Article  PubMed  Google Scholar 

  112. Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–304.

    Article  PubMed  Google Scholar 

  113. Stypulkowski PH, Stanslaski SR, Denison TJ, Giftakis JE. Chronic evaluation of a clinical system for deep brain stimulation and recording of neural network activity. Stereotact Funct Neurosurg. 2013;91(4):220–32.

    Article  PubMed  Google Scholar 

  114. Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004;61(1):42–50.

    Article  PubMed  Google Scholar 

  115. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  116. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, et al. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry. 2010;67(2):117–24.

    Article  PubMed  Google Scholar 

  117. Kubu CS, Malone DA, Chelune G, Malloy P, Rezai AR, Frazier T, et al. Neuropsychological outcome after deep brain stimulation in the ventral capsule/ventral striatum for highly refractory obsessive-compulsive disorder or major depression. Stereotact Funct Neurosurg. 2013;91(6):374–8.

    Article  PubMed  Google Scholar 

  118. Taghva AS, Malone DA, Rezai AR. Deep brain stimulation for treatment-resistant depression. World Neurosurg. 2013;80(3–4):S27 e17–24.

    Google Scholar 

  119. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  PubMed  Google Scholar 

  120. Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Spinal cord stimulation for treatment of patients in the minimally conscious state. Neurol Med Chir (Tokyo). 2012;52(7):475–81.

    Article  Google Scholar 

  121. Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state. World Neurosurg. 2013;80(3–4):S30 e31–9.

    Google Scholar 

  122. Matsui T, Asano T, Takakura K, Yamada R, Hosobuchi Y. Beneficial effects of cervical spinal cord stimulation (cscs) on patients with impaired consciousness: a preliminary report. Pacing Clin Electrophysiol. 1989;12(4 Pt 2):718–25.

    Article  CAS  PubMed  Google Scholar 

  123. Kanno T, Morita I, Yamaguchi S, Yokoyama T, Kamei Y, Anil SM, et al. Dorsal column stimulation in persistent vegetative state. Neuromodulation. 2009;12(1):33–8.

    Article  PubMed  Google Scholar 

  124. Yamamoto T, Katayama Y. Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil. 2005;15(3–4):406–13.

    Article  PubMed  Google Scholar 

  125. Yamamoto T, Katayama Y, Kobayashi K, Kasai M, Oshima H, Fukaya C. DBS therapy for a persistent vegetative state: ten years follow-up results. Acta Neurochir Suppl. 2003;87:15–8.

    CAS  PubMed  Google Scholar 

  126. Yamamoto T, Katayama Y, Oshima H, Fukaya C, Kawamata T, Tsubokawa T. Deep brain stimulation therapy for a persistent vegetative state. Acta Neurochir Suppl. 2002;79:79–82.

    CAS  PubMed  Google Scholar 

  127. Shah SA, Schiff ND. Central thalamic deep brain stimulation for cognitive neuromodulation—a review of proposed mechanisms and investigational studies. Eur J Neurosci. 2010;32(7):1135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Schiff ND. Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci. 2012;1265:56–68.

    Article  PubMed  Google Scholar 

  129. Schiff ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 2008;1129:105–18.

    Article  PubMed  Google Scholar 

  130. Shirvalkar P, Seth M, Schiff ND, Herrera DG. Cognitive enhancement with central thalamic electrical stimulation. Proc Natl Acad Sci U S A. 2006;103(45):17007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Phan TG. Disorders of consciousness: are we ready for a paradigm shift? Lancet Neurol. 2013;12(2):131–2.

    Article  PubMed  Google Scholar 

  132. Jox RJ, Bernat JL, Laureys S, Racine E. Disorders of consciousness: responding to requests for novel diagnostic and therapeutic interventions. Lancet Neurol. 2012;11(8):732–8.

    Article  PubMed  Google Scholar 

  133. Jox RJ, Bernat JL, Laureys S, Racine E. Disorders of consciousness: are we ready for a paradigm shift?—authors’ reply. Lancet Neurol. 2013;12(2):132.

    Article  PubMed  Google Scholar 

  134. Katayama Y, Tsubokawa T, Harano S, Tsukiyama T. Dissociation of subjective pain report and pain-related late positive components of cerebral evoked potentials in subjects with brain lesions. Brain Res Bull. 1985;14(5):423–6.

    Article  CAS  PubMed  Google Scholar 

  135. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, et al. A phase i trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521–34.

    Article  CAS  PubMed  Google Scholar 

  136. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, et al. A phase ii study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366(6):502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bick SK, Eskandar EN. Neuromodulation for restoring memory. Neurosurg Focus. 2016;40(5):E5.

    Article  PubMed  Google Scholar 

  139. Shin SS, Dixon CE, Okonkwo DO, Richardson RM. Neurostimulation for traumatic brain injury. J Neurosurg. 2014;121(5):1219–31.

    Article  PubMed  Google Scholar 

  140. Roy HA, Green AL, Aziz TZ. State of the art: novel applications for deep brain stimulation. Neuromodulation. 2017;21(2):126–34.

    Article  PubMed  Google Scholar 

  141. Li S, Zaninotto AL, Neville IS, Paiva WS, Nunn D, Fregni F. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence. Neuropsychiatr Dis Treat. 2015;11:1573–86.

    PubMed  PubMed Central  Google Scholar 

  142. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.

    Article  CAS  PubMed  Google Scholar 

  143. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110(12):4780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zijlmans M, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol. 2012;71(2):169–78.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Rossi PJ, Opri E, Shute JB, Molina R, Bowers D, Ward H, et al. Scheduled, intermittent stimulation of the thalamus reduces tics in Tourette syndrome. Parkinsonism Relat Disord. 2016;29:35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84.

    Article  CAS  PubMed  Google Scholar 

  147. Okun MS, Foote KD, Wu SS, Ward HE, Bowers D, Rodriguez RL, et al. A trial of scheduled deep brain stimulation for Tourette syndrome: moving away from continuous deep brain stimulation paradigms. JAMA Neurol. 2013;70(1):85–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. A. Murad MD, FAANS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlton, W.R.Y., Murad, G.J.A. (2018). Functional Neurosurgery for Sequelae of Traumatic Brain Injury. In: Timmons, S. (eds) Controversies in Severe Traumatic Brain Injury Management. Springer, Cham. https://doi.org/10.1007/978-3-319-89477-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89477-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89476-8

  • Online ISBN: 978-3-319-89477-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics