Skip to main content

Heat Shock Protein 70 and Other Heat Shock Proteins in Diseased Retina

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 630 Accesses

Abstract

Heat shock proteins (HSP) belong to a family of stress-induced proteins essential to cell survival. HSP have multiple protective roles through assistance in protein folding, maintaining mitochondrial homeostasis, suppressing proinflammatory cytokines, resisting ischemic damage and protecting cells from apoptotic and necrotic death. This chapter discusses the important roles of HSP, particularly HSP70 in enhancing the survival of neurons in retinal disease through different pathways. Studies in various retinal cell lines, animal models and human tissue demonstrate altered HSP expression under different stresses and diseases. These findings implicate the critical role of. HSP in the diseased retina as well as providing support for translating the HSP’ cellular defense strategy into therapy to protect and rescue injured retina from different retinal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

age-related macular degeneration

DR:

diabetic retinopathy

GGA:

geranylgeranylacetone

HSP:

heat shock proteins

LC-MS/MS:

liquid chromatography tandem-mass spectrometry

NFκB:

nuclear factor-κB

RGCs:

retinal ganglion cells

RPE:

retinal pigment epithelium

STZ:

streptozotocin 

TNF:

tumour necrosis factor

VEGF:

vascular endothelial growth factor

References

  • Aguilà, M., Bevilacqua, D., McCulley, C., et al. (2014). Hsp90 inhibition protects against inherited retinal degeneration. Human Molecular Genetics, 23, 2164–2175.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo, A. P., Virot, S., Chaufour, S., Firdaus, W., Kretz-Remy, C., & Diaz-Latoud, C. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signaling, 7, 414–422.

    Article  CAS  Google Scholar 

  • Augustin, M., Ali Asim Mahar, M., Lakkisto, P., et al. (2011). Heat shock attenuates VEGF expression in three-dimensional myoblast sheets deteriorating therapeutic efficacy in heart failure. Medical Science Monitor, 17, BR345–BR353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basu, S., & Srivastava, P. K. (2000). Heat shock proteins: The fountainhead of innate and adaptive immune responses. Cell Stress & Chaperones, 5, 443–451.

    Article  CAS  Google Scholar 

  • Bernstein, S. L., Liu, A. M., Hansen, B. C., & Somiari, R. I. (2000). Heat shock cognate-70 gene expression declines during normal aging of the primate retina. Investigative Ophthalmology & Visual Science, 41, 2857–2862.

    CAS  Google Scholar 

  • Brenu, E. W., Staines, D. R., Tajouri, L., Huth, T., Ashton, K. J., & Marshall-Gradisnik, S. M. (2013). Heat shock proteins and regulatory T cells. Autoimmune Diseases, 8, 813256.

    Google Scholar 

  • Brucklacher, R. M., Patel, K. M., VanGuilder, H. D., et al. (2008). Whole genome assessment of the retinal response to diabetes reveals a progressive neurovascular inflammatory response. BMC Medical Genomics, 1, 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buch, H., Vinding, T., La Cour, M., Appleyard, M., Jensen, G. B., & Nielsen, N. V. (2004). Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: The Copenhagen City Eye Study. Ophthalmology, 111, 53–61.

    Article  PubMed  Google Scholar 

  • Burt, D., Bruno, G., Chaturvedi, N., et al. (2009). Anti-heat shock protein 27 antibody levels and diabetes complications in the EURODIAB study. Diabetes Care, 32, 1269–1271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christians, E. S., Zhou, Q., Renard, J., & Benjamin, I. J. (2003). Heat shock proteins in mammalian development. Seminars in Cell & Developmental Biology, 14, 283–290.

    Article  CAS  Google Scholar 

  • Christians, E. S., Ishiwata, T., & Benjamin, I. J. (2012). Small heat shock proteins in redox metabolism: Implications for cardiovascular diseases. The International Journal of Biochemistry & Cell Biology, 44, 1632–1645.

    Article  CAS  Google Scholar 

  • Congdon, N., O'Colmain, B., Klaver, C. C., et al. (2004). Causes and prevalence of visual impairment among adults in the United States. Archives of Ophthalmology, 122, 477–485.

    Article  PubMed  Google Scholar 

  • de Jong, P. T. (2006). Age-related macular degeneration. The New England Journal of Medicine, 355, 1474–1485.

    Article  PubMed  Google Scholar 

  • De, S., Rabin, D. M., Salero, E., Lederman, P. L., Temple, S., & Stern, J. H. (2007). Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: A biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Archives of Ophthalmology, 125, 641–645.

    Article  PubMed  CAS  Google Scholar 

  • Decanini, A., Nordgaard, C. L., Feng, X., Ferrington, D. A., & Olsen, T. W. (2007). Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. American Journal of Ophthalmology, 143, 607–615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deocaris, C. C., Kaul, S. C., & Wadhwa, R. (2006). On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress & Chaperones, 11, 116–128.

    Article  CAS  Google Scholar 

  • Dillmann, W. H. (1999). Heat shock proteins and protection against ischemic injury. Infectious Diseases in Obstetrics and Gynecology, 7, 55–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong, Z., Kase, S., Ando, R., et al. (2012). Alphab-crystallin expression in epiretinal membrane of human proliferative diabetic retinopathy. Retina, 32, 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  • Ferrington, D. A., Sinha, D., & Kaarniranta, K. (2016). Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Progress in Retinal and Eye Research, 51, 69–89.

    Article  PubMed  CAS  Google Scholar 

  • Gao, B., & Tsan, M. F. (2004). Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochemical and Biophysical Research Communications, 317, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, S. K., Fortune, B., Wang, L., Downs, J. C., & Burgoyne, C. F. (2012). Intraocular pressure magnitude and variability as predictors of rates of structural change in non-human primate experimental glaucoma. Experimental Eye Research, 103, 1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkes, E. L., Krueger-Naug, A. M., Nickerson, P. E., Myers, T. L., Currie, R. W., & Clarke, D. B. (2004). Expression of Hsp27 in retinal ganglion cells of the rat during postnatal development. The Journal of Comparative Neurology, 478, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Heise, E. A., & Fort, P. E. (2011). Impact of diabetes on alpha-crystallins and other heat shock proteins in the eye. Journal of Ocular Biology Disease Information, 4, 62–69.

    Article  Google Scholar 

  • Hooper, P. L., & Hooper, J. J. (2004). Is low-heat shock protein 70 a primary or a secondary event in the development of atherosclerosis? Hypertension, 43, e18–e19. author reply e18-9.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W., Fileta, J. B., Filippopoulos, T., Ray, A., Dobberfuhl, A., & Grosskreutz, C. L. (2007). Hsp27 phosphorylation in experimental glaucoma. Investigative Ophthalmology & Visual Science, 48, 4129–4135.

    Article  Google Scholar 

  • Hubbard, T. J., & Sander, C. (1991). The role of heat-shock and chaperone proteins in protein folding: Possible molecular mechanisms. Protein Engineering, 4, 711–717.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, Y., Kwong, J. M., & Caprioli, J. (2003). Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Investigative Ophthalmology & Visual Science, 44, 1982–1992.

    Article  Google Scholar 

  • Jarrett, S. G., & Boulton, M. E. (2012). Consequences of oxidative stress in age-related macular degeneration. Molecular Aspects of Medicine, 33, 399–417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo, D. H., An, H., Chang, D. J., et al. (2014). Hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retina is suppressed by HIF-1alpha destabilization by SH-1242 and SH-1280, novel hsp90 inhibitors. Journal of Molecular Medicine (Berl), 92, 1083–1092.

    Article  CAS  Google Scholar 

  • Johnson, P. T., Brown, M. N., Pulliam, B. C., Anderson, D. H., & Johnson, L. V. (2005). Synaptic pathology, altered gene expression, and degeneration in photoreceptors impacted by drusen. Investigative Ophthalmology & Visual Science, 46, 4788–4795.

    Article  Google Scholar 

  • Kaarniranta, K., Sinha, D., Blasiak, J., et al. (2013). Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy, 9, 973–984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanamaru, C., Yamada, Y., Hayashi, S., et al. (2014). Retinal toxicity induced by small-molecule Hsp90 inhibitors in beagle dogs. The Journal of Toxicological Sciences, 39, 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Kang, G. Y., Bang, J. Y., Choi, A. J., et al. (2014). Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. Journal of Proteome Research, 13, 581–595.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, R., Sreekumar, P. G., & Hinton, D. R. (2016). Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochimica et Biophysica Acta, 1860, 258–268.

    Article  PubMed  CAS  Google Scholar 

  • Kase, S., He, S., Sonoda, S., et al. (2010). alphaB-crystallin regulation of angiogenesis by modulation of VEGF. Blood, 115, 3398–3406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80, 183–201.

    Article  CAS  Google Scholar 

  • Kim, H. J., Kim, P. K., Yoo, H. S., & Kim, C. W. (2012). Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clinical Biochemistry, 45, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. K., Na, H. J., Lee, W. R., Jeoung, M. H., & Lee, S. (2016). Heat shock protein 70-1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications, 469, 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, K., Tanaka, N., Nakamura, N., Takano, S., & Ohkuma, S. (2007). Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans. The Journal of Biological Chemistry, 282, 5910–5918.

    Article  PubMed  CAS  Google Scholar 

  • Kivinen, N., Hyttinen, J., Viiri, J. et al. (2014). Hsp70 binds reversibly to proteasome inhibitor–induced protein aggregates and evades autophagic clearance in ARPE-19 cells, Vol. 2.

    Google Scholar 

  • Kojima, M., Hoshimaru, M., Aoki, T., et al. (1996). Expression of heat shock proteins in the developing rat retina. Neuroscience Letters, 205, 215–217.

    Article  PubMed  CAS  Google Scholar 

  • Koll, H., Guiard, B., Rassow, J., et al. (1992). Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell, 68, 1163–1175.

    Article  PubMed  CAS  Google Scholar 

  • Koriyama, Y., Sugitani, K., Ogai, K., & Kato, S. (2014). Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. Journal of Neurochemistry, 130, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Kregel, K. C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology (1985), 92, 2177–2186.

    Article  CAS  Google Scholar 

  • Kumar, D. M., & Agarwal, N. (2007). Oxidative stress in glaucoma: A burden of evidence. Journal of Glaucoma, 16, 334–343.

    Article  PubMed  Google Scholar 

  • Kumar, P. A., Haseeb, A., Suryanarayana, P., Ehtesham, N. Z., & Reddy, G. B. (2005). Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Archives of Biochemistry and Biophysics, 444, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Kurucz, I., Morva, A., Vaag, A., et al. (2002). Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes, 51, 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  • Kwong, J. M., Gu, L., Nassiri, N., et al. (2015). AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Therapy, 22, 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Li, Y., & Duan, X. (2014). Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model. Neural Regeneration Research, 9, 1395–1401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liew, G., Michaelides, M., & Bunce, C. (2014). A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open, 4, e004015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lill, R., & Muhlenhoff, U. (2006). Iron-sulfur protein biogenesis in eukaryotes: Components and mechanisms. Annual Review of Cell and Developmental Biology, 22, 457–486.

    Article  PubMed  CAS  Google Scholar 

  • Lutjen-Drecoll, E. (2005). Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Experimental Eye Research, 81, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Malyshev, I., Manukhina, E. B., Mikoyan, V. D., Kubrina, L. N., & Vanin, A. F. (1995). Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Letters, 370, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, K., Jahangiri, M., & Xu, Q. (2004). Autoimmunity to heat shock proteins in atherosclerosis. Autoimmunity Reviews, 3, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Manicki, M., Majewska, J., Ciesielski, S., et al. (2014). Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein. The Journal of Biological Chemistry, 289, 30268–30278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin, J., Horwich, A. L., & Hartl, F. U. (1992). Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science, 258, 995–998.

    Article  PubMed  CAS  Google Scholar 

  • Morales, A. V., Hadjiargyrou, M., Díaz, B., Hernández-Sánchez, C., De Pablo, F., & De La Rosa, E. J. (1998). Heat shock proteins in retinal neurogenesis: Identification of the PM1 antigen as the chick Hsc70 and its expression in comparison to that of other chaperones. European Journal of Neuroscience, 10, 3237–3245.

    Article  PubMed  CAS  Google Scholar 

  • Mullins, R. F., Russell, S. R., Anderson, D. H., & Hageman, G. S. (2000). Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. The FASEB Journal, 14, 835–846.

    Article  PubMed  CAS  Google Scholar 

  • Nahomi, R. B., Palmer, A., Green, K. M., Fort, P. E., & Nagaraj, R. H. (2014). Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1842, 164–174.

    Article  CAS  Google Scholar 

  • Nakata, K., Crabb, J. W., & Hollyfield, J. G. (2005). Crystallin distribution in Bruch's membrane-choroid complex from AMD and age-matched donor eyes. Experimental Eye Research, 80, 821–826.

    Article  PubMed  CAS  Google Scholar 

  • Nickells, R. W. (2012). The cell and molecular biology of glaucoma: Mechanisms of retinal ganglion cell death. Investigative Ophthalmology & Visual Science, 53, 2476–2481.

    Article  CAS  Google Scholar 

  • Nordgaard, C. L., Berg, K. M., Kapphahn, R. J., et al. (2006). Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Investigative Ophthalmology & Visual Science, 47, 815–822.

    Article  Google Scholar 

  • Nordgaard, C. L., Karunadharma, P. P., Feng, X., Olsen, T. W., & Ferrington, D. A. (2008). Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Investigative Ophthalmology & Visual Science, 49, 2848–2855.

    Article  Google Scholar 

  • Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., & Arrigo, A. P. (2002). Hsp27 as a negative regulator of cytochrome C release. Molecular and Cellular Biology, 22, 816–834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinach, S., Burt, D., Berrone, E., et al. (2013). Retinal heat shock protein 25 in early experimental diabetes. Acta Diabetologica, 50, 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Piri, N., Kwong, J. M., Gu, L., & Caprioli, J. (2016). Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 52, 22–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plafker, S. M., O’Mealey, G. B., & Szweda, L. I. (2012). Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. International Review of Cell and Molecular Biology, 298, 135–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Przyklenk, K., & Kloner, R. A. (1998). Ischemic preconditioning: Exploring the paradox. Progress in Cardiovascular Diseases, 40, 517–547.

    Article  PubMed  CAS  Google Scholar 

  • Qing, G., Duan, X., & Jiang, Y. (2005). Heat shock protein 72 protects retinal ganglion cells in rat model of acute glaucoma. Yan Ke Xue Bao, 21, 163–168.

    PubMed  CAS  Google Scholar 

  • Quin, G., Len, A. C., Billson, F. A., & Gillies, M. C. (2007). Proteome map of normal rat retina and comparison with the proteome of diabetic rat retina: New insight in the pathogenesis of diabetic retinopathy. Proteomics, 7, 2636–2650.

    Article  PubMed  CAS  Google Scholar 

  • Rangasamy, S., McGuire, P. G., & Das, A. (2012). Diabetic retinopathy and inflammation: Novel therapeutic targets. Middle East Africa Journal of Ophthalmology, 19, 52–59.

    Article  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Ritossa, F. (1996). Discovery of the heat shock response. Cell Stress & Chaperones, 1, 97–98.

    Article  CAS  Google Scholar 

  • Ryhanen, T., Hyttinen, J. M., Kopitz, J., et al. (2009). Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. Journal of Cellular and Molecular Medicine, 13, 3616–3631.

    Article  PubMed  Google Scholar 

  • Sacca, S. C., Izzotti, A., Rossi, P., & Traverso, C. (2007). Glaucomatous outflow pathway and oxidative stress. Experimental Eye Research, 84, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, M., Sakai, H., Nakamura, Y., Fukuchi, T., & Sawaguchi, S. (2003). Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Japanese Journal of Ophthalmology, 47, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Sayed, K. M., & Mahmoud, A. A. (2016). Heat shock protein-70 and hypoxia inducible factor-1alpha in type 2 diabetes mellitus patients complicated with retinopathy. Acta Ophthalmologica, 94, e361–e366.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry, 265, 12111–12114.

    PubMed  CAS  Google Scholar 

  • Schmeer, C., Gamez, A., Tausch, S., Witte, O. W., & Isenmann, S. (2008). Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Investigative Ophthalmology & Visual Science, 49, 4971–4981.

    Article  Google Scholar 

  • Sessa, C., Shapiro, G. I., Bhalla, K. N., et al. (2013). First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clinical Cancer Research, 19, 3671–3680.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, P. X., Stiles, T., Douglas, C., et al. (2016). Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Molecular Science, 3, 196–221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stojanovski, D., Rissler, M., Pfanner, N., & Meisinger, C. (2006). Mitochondrial morphology and protein import – A tight connection? Biochimica et Biophysica Acta, 1763, 414–421.

    Article  PubMed  CAS  Google Scholar 

  • Strunnikova, N., Baffi, J., Gonzalez, A., Silk, W., Cousins, S. W., & Csaky, K. G. (2001). Regulated heat shock protein 27 expression in human retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 42, 2130–2138.

    CAS  Google Scholar 

  • Subrizi, A., Toropainen, E., Ramsay, E., Airaksinen, A. J., Kaarniranta, K., & Urtti, A. (2015). Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharmaceutical Research, 32, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai, G., Bianchi, K., Varnai, P., et al. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. The Journal of Cell Biology, 175, 901–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takayama, S., Reed, J. C., & Homma, S. (2003). Heat-shock proteins as regulators of apoptosis. Oncogene, 22, 9041–9047.

    Article  PubMed  CAS  Google Scholar 

  • Talla, V., Porciatti, V., Chiodo, V., Boye, S. L., Hauswirth, W. W., & Guy, J. (2014). Gene therapy with mitochondrial heat shock protein 70 suppresses visual loss and optic atrophy in experimental autoimmune encephalomyelitis. Investigative Ophthalmology & Visual Science, 55, 5214–5226.

    Article  CAS  Google Scholar 

  • Tezel, G., & Wax, M. B. (2000). The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. The Journal of Neuroscience, 20, 3552–3562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tezel, G., Hernandez, R., & Wax, M. B. (2000). Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Archives of Ophthalmology, 118, 511–518.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, R. C., Li, J., Chan, W. F., & Tripathi, B. J. (1994). Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Experimental Eye Research, 59, 723–727.

    Article  PubMed  CAS  Google Scholar 

  • van Eden, W., van der Zee, R., & Prakken, B. (2005). Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews. Immunology, 5, 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Vanmuylder, N., Evrard, L., & Dourov, N. (1997). Strong expression of heat shock proteins in growth plate cartilage, an immunohistochemical study of HSP28, HSP70 and HSP110. Anatomy and Embryology (Berlin), 195, 359–362.

    Article  CAS  Google Scholar 

  • Voos, W., & Rottgers, K. (2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochimica et Biophysica Acta, 1592, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Yaguchi, T., Hasan, M. K., Mitsui, Y., Reddel, R. R., & Kaul, S. C. (2002). Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Experimental Cell Research, 274, 246–253.

    Article  PubMed  CAS  Google Scholar 

  • Wakakura, M., & Foulds, W. S. (1989). Response of cultured Muller cells to heat shock – An immunocytochemical study of heat shock and intermediate filament proteins in response to temperature elevation. Experimental Eye Research, 48, 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. H., & Xing, Y. Q. (2017). Evaluation of heat shock protein (HSP-72) expression in retinal ganglion cells of rats with glaucoma. Experimental and Therapeutic Medicine, 14, 1577–1581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Sreekumar, P. G., Valluripalli, V., et al. (2014). Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. Journal of Controlled Release, 191, 4–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Windisch, B. K., LeVatte, T. L., Archibald, M. L., & Chauhan, B. C. (2009). Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia. Clinical & Experimental Ophthalmology, 37, 299–307.

    Article  Google Scholar 

  • Wu, W. C., Kao, Y. H., Hu, P. S., & Chen, J. H. (2007). Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Experimental Eye Research, 85, 721–731.

    Article  PubMed  CAS  Google Scholar 

  • Yenari, M. A., Liu, J., Zheng, Z., Vexler, Z. S., Lee, J. E., & Giffard, R. G. (2005). Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Annals of the New York Academy of Sciences, 1053, 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A. L., Fuchshofer, R., Birke, M., Kampik, A., Bloemendal, H., & Welge-Lussen, U. (2008). Oxidative stress and TGF-beta2 increase heat shock protein 27 expression in human optic nerve head astrocytes. Investigative Ophthalmology & Visual Science, 49, 5403–5411.

    Article  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D. F., & Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94, 471–480.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the University of Sydney Postgraduate Award (to B. B.) and Early Career Researcher Kick Start Grant from the Balnaves Foundation and Sydney Medical School (to L. Z.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T., Bahrami, B., Zhu, L. (2018). Heat Shock Protein 70 and Other Heat Shock Proteins in Diseased Retina. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_14

Download citation

Publish with us

Policies and ethics