Skip to main content

Effect of Supports on Catalytic Centers

  • Chapter
  • First Online:
Chalcogenide Materials for Energy Conversion

Part of the book series: Nanostructure Science and Technology ((NST))

  • 793 Accesses

Abstract

This chapter summarizes the effect of the supports on chalcogenide materials aiming at enhancing electrocatalytic and/or photocatalytic processes. The different nature of the supports from carbon, oxides, and carbon–oxide composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su L, Jia W, Li C-M, Lei Y (2014) Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells. Chemsuschem 7(2):361–378. https://doi.org/10.1002/cssc.201300823

    Article  CAS  PubMed  Google Scholar 

  2. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. Int J Hydrogen Energy 30(11):1213–1220. https://doi.org/10.1016/j.ijhydene.2005.05.001

    Article  CAS  Google Scholar 

  3. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in supported-metal catalysts. Science 211 (4487):1121–1125. doi:cuspal/science.211.4487.1121

    Google Scholar 

  4. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100(1):170–175

    Article  CAS  Google Scholar 

  5. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688

    Article  CAS  Google Scholar 

  6. Schwab G-M, Derleth H (1967) Inverse Mischkatalysatoren. Z Phys Chem 53(1–6):1. https://doi.org/10.1524/zpch.1967.53.1-6.001

    Article  CAS  Google Scholar 

  7. Solymosi F (1968) Importance of the electric properties of supports in the carrier effect. Catal Rev 1(1):233–255. https://doi.org/10.1080/01614946808064705

    Article  Google Scholar 

  8. Timperman L, Lewera A, Vogel W, Alonso-Vante N (2010) Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem Commun 12(12):1772–1775

    Article  CAS  Google Scholar 

  9. Bäumer M, Biener J, Madix RJ (1999) Growth, electronic properties and reactivity of vanadium deposited onto a thin alumina film. Surf Sci 432(3):189–198. https://doi.org/10.1016/S0039-6028(99)00400-8

    Article  Google Scholar 

  10. Fu Q, Wagner T, Olliges S, Carstanjen H-D (2005) Metal−oxide interfacial reactions:  encapsulation of Pd on TiO2 (110). J Phys Chem B 109(2):944–951. https://doi.org/10.1021/jp046091u

    Article  CAS  Google Scholar 

  11. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3):285–305. https://doi.org/10.1007/s11244-007-9000-0

    Article  CAS  Google Scholar 

  12. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Litster S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299. https://doi.org/10.1149/2.0751412jes

    Article  CAS  Google Scholar 

  13. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties, 1st edn. Wiley-interscience, New York

    Google Scholar 

  14. Pandy A, Yang Z, Gummalla M, Atrazhev VV, Kuzminyh NY, Sultanov VI, Burlatsky S (2013) A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J Electrochem Soc 160(9):F972–F979. https://doi.org/10.1149/2.036309jes

    Article  CAS  Google Scholar 

  15. Manzo-Robledo A, Boucher AC, Pastor E, Alonso-Vante N (2002) Electro-oxidation of carbon monoxide and methanol on carbon-supported Pt–Sn nanoparticles: a DEMS study. Fuel Cells 2(2):109–116

    Article  CAS  Google Scholar 

  16. Ashton SJ, Arenz M (2012) Comparative DEMS study on the electrochemical oxidation of carbon blacks. J Power Sour 217:392–399. https://doi.org/10.1016/j.jpowsour.2012.06.015

    Article  CAS  Google Scholar 

  17. Aziz AA, Bakar SA, Rusop M (2010) Carbon nanostructured materials. In: Yahya N (ed) Carbon and oxide nanostructures, vol 5, Advanced structured materials. Springer, Berlin, Heidelberg, pp 165–193. https://doi.org/10.1007/8611_2010_14

    Google Scholar 

  18. Krueger A (2010) Carbon materials and nanotechnology. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  19. Khatri I, Tetsuo S (2010) Carbon nanotubes towards polymer solar cell. In: Yahya N (ed) Carbon and oxide nanostructures, vol 5, Advanced structured materials. Springer, Berlin, Heidelberg, pp 101–123. https://doi.org/10.1007/8611_2010_16

    Google Scholar 

  20. McBreen J, Olender H, Srinivasan S, Kordesch KV (1981) Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation. J Appl Electrochem 11(6):787–796. https://doi.org/10.1007/bf00615184

    Article  CAS  Google Scholar 

  21. Bundy FP (1962) Direct conversion of graphite to diamond in static pressure apparatus. Science 137(3535):1057

    Article  CAS  Google Scholar 

  22. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  24. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  25. Luo Y, Alonso-Vante N (2015) The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the art. Electrochim Acta 179:108–118. https://doi.org/10.1016/j.electacta.2015.04.098

    Article  CAS  Google Scholar 

  26. Lee J-S, Park GS, Lee HI, Kim ST, Cao R, Liu M, Cho J (2011) Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett 11(12):5362–5366. https://doi.org/10.1021/nl2029078

    Article  CAS  PubMed  Google Scholar 

  27. Jaouen F, Dodelet J-P (2007) Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part I. Model for carbon black gasification by NH3: parametric calibration and electrochemical validation. J Phys Chem C 111 (16):5963–5970

    Article  CAS  Google Scholar 

  28. Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Fe/N/C non-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim Acta 53(6):2925–2938

    Article  CAS  Google Scholar 

  29. Lefèvre M, Dodelet J-P (2008) Fe-based electrocatalysts made with microporous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim Acta 53(28):8269–8276

    Article  Google Scholar 

  30. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B: Environ 88(1–2):1–24. https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  31. Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y (2016) Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 29:314–322. https://doi.org/10.1016/j.nanoen.2016.03.016

    Article  CAS  Google Scholar 

  32. Luo Y, Calvillo L, Daiguebonne C, Daletou MK, Granozzi G, Alonso-Vante N (2016) A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. Appl Catal B: Environ 189:39–50. https://doi.org/10.1016/j.apcatb.2016.02.028

    Article  CAS  Google Scholar 

  33. Luo Y, Habrioux A, Calvillo L, Granozzi G, Alonso-Vante N (2014) Yttrium Oxide/Gadolinium Oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction. ChemPhysChem 15(10):2136–2144. https://doi.org/10.1002/cphc.201400042

    Article  CAS  PubMed  Google Scholar 

  34. Luo Y, Habrioux A, Calvillo L, Granozzi G, Alonso-Vante N (2015) Thermally induced strains on the catalytic activity and stability of Pt–M2O3/C (M=Y or Gd) catalysts towards oxygen reduction reaction. ChemCatChem 7(10):1573–1582. https://doi.org/10.1002/cctc.201500130

    Article  CAS  Google Scholar 

  35. Susac D, Sode A, Zhu L, Wong PC, Teo M, Bizzotto D, Mitchell KAR, Parsons RR, Campbell SA (2006) A methodology for investigating new nonprecious metal catalysts for PEM fuel cells. J Phys Chem B 110(22):10762–10770

    Article  CAS  Google Scholar 

  36. Ma J, Habrioux A, Guignard N, Alonso-Vante N (2012) The functionalizing effect of increasingly graphitic carbon supports on carbon-supported and TiO2–carbon composite-supported Pt nanoparticles. J Phys Chem C 116(41):21788–21794. https://doi.org/10.1021/jp304947y

    Article  CAS  Google Scholar 

  37. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106

    Article  Google Scholar 

  38. Ma J, Habrioux A, Morais C, Lewera A, Vogel W, Verde-Gómez Y, Ramos-Sanchez G, Balbuena PB, Alonso-Vante N (2013) Spectroelectrochemical probing of the strong interaction between platinum nanoparticles and graphitic domains of carbon. ACS Catal 3(9):1940–1950. https://doi.org/10.1021/cs4003222

    Article  CAS  Google Scholar 

  39. Ma J, Habrioux A, Pisarek M, Lewera A, Alonso-Vante N (2013) Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochem Commun 29:12–16. https://doi.org/10.1016/j.elecom.2012.12.028

    Article  CAS  Google Scholar 

  40. Ma J, Habrioux A, Luo Y, Ramos-Sanchez G, Calvillo L, Granozzi G, Balbuena PB, Alonso-Vante N (2015) Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. J Mater Chem A 3(22):11891–11904. https://doi.org/10.1039/C5TA01285F

    Article  CAS  Google Scholar 

  41. Bönnemann H, Braun G, Brijoux W, Brinkmann R, Tilling AS, Seevogel K, Siepen K (1996) Nanoscale colloidal metals and alloys stabilized by solvents and surfactants: preparation and use as catalyst precursors. J Organomet Chem 520(1–2):143–162

    Article  Google Scholar 

  42. Koffi RC, Coutanceau C, Garnier E, Léger JM, Lamy C (2005) Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 50(20):4117–4127

    Article  CAS  Google Scholar 

  43. Veisz B, Tóth L, Teschner D, Paál Z, Gyorffy N, Wild U, Schlögl R (2005) Palladium-platinum powder catalysts manufactured by colloid synthesis: I. Preparation and characterization. J Mol Catal A: Chem 238 (1–2):56–62

    Article  CAS  Google Scholar 

  44. Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22(6):2892–2898

    Article  CAS  Google Scholar 

  45. Hernandez-Fernandez P, Rojas S, Ocon P, GomezdelaFuente JL, SanFabian J, Sanza J, Pena MA, Garcia-Garcia FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt-Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111(7):2913–2923

    Article  CAS  Google Scholar 

  46. Speder J, Zana A, Spanos I, Kirkensgaard JJK, Mortensen K, Arenz M (2013) On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochem Commun 34:153–156. https://doi.org/10.1016/j.elecom.2013.06.001

    Article  CAS  Google Scholar 

  47. Alonso-Vante N (2006) Carbonyl tailored electrocatalysts. Fuel Cells 6(3–4):182–189

    Article  CAS  Google Scholar 

  48. Favry E, Wang D, Fantauzzi D, Anton J, Su DS, Jacob T, Alonso-Vante N (2011) Synthesis, electrochemical characterization and molecular dynamics studies of surface segregation of platinum nano-alloy electrocatalysts. Phys Chem Chem Phys 13(20):9201–9208

    Article  CAS  Google Scholar 

  49. Gago Aldo S, Habrioux A, Alonso-Vante N (2012) Tailoring nanostructured catalysts for electrochemical energy conversion systems. ntrev 1(5):427. https://doi.org/10.1515/ntrev-2012-0013

  50. Vogel W, Kaghazchi P, Jacob T, Alonso-Vante N (2007) Genesis of RuxSey nanoparticles by pyrolysis of Ru4Se2(CO)11: a combined X-ray in situ and DFT study. J Phys Chem C 111:3908–3913

    Article  CAS  Google Scholar 

  51. Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108(30):11024–11034

    Article  CAS  Google Scholar 

  52. Boucher AC, Alonso-Vante N, Dassenoy F, Vogel W (2003) Structural and electrochemical studies of Pt-Sn nanoparticulate catalysts. Langmuir 19(26):10885–10891

    Article  CAS  Google Scholar 

  53. Alonso-Vante N (2008) Tailoring of metal cluster-like materials for the molecular oxygen reduction reaction. Pure Appl Chem 80(10):2103–2114

    Article  CAS  Google Scholar 

  54. Deivaraj TC, Lee JY (2005) Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications—a comparative study. J Power Sourc 142(1–2):43–49

    Article  CAS  Google Scholar 

  55. Swider KE, Merzbacher CI, Hagans PL, Rolison DR (1997) Synthesis of ruthenium dioxide-titanium dioxide aerogels: redistribution of electrical properties on the nanoscale. Chem Mater 9(5):1248–1255

    Article  CAS  Google Scholar 

  56. Elezovic NR, Babic BM, Radmilovic VR, Vracar LM, Krstajic NV (2009) Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. Electrochim Acta 54(9):2404–2409

    Article  CAS  Google Scholar 

  57. Peng Z, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131(22):7542–7543. https://doi.org/10.1021/ja902256a

    Article  CAS  PubMed  Google Scholar 

  58. Ma J, Habrioux A, Gago AS, Alonso-Vante N (2013) Towards understanding the essential role played by the platinum-support interaction on electrocatalytic activity. ECS Trans 45(21):25–33. https://doi.org/10.1149/04521.0025ecst

    Article  CAS  Google Scholar 

  59. Lin C-T, Huang HJ, Yang J-J, Shiao M-H A simple fabrication process of Pt-TiO2 hybrid electrode for photo-assisted methanol fuel cells. Microelectron Eng In Press, Corrected Proof

    Google Scholar 

  60. Shironita S, Mori K, Shimizu T, Ohmichi T, Mimura N, Yamashita H (2008) Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Appl Surf Sci 254(23):7604–7607

    Article  CAS  Google Scholar 

  61. Timperman L, Feng YJ, Vogel W, Alonso-Vante N (2010) Substrate effect on oxygen reduction electrocatalysis. Electrochim Acta 55(26):7558–7563

    Article  CAS  Google Scholar 

  62. Timperman L, Gago AS, Alonso-Vante N (2011) Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide-carbon composites. J Power Sour 196(9):4290–4297

    Article  CAS  Google Scholar 

  63. Ruiz Camacho B, Morais C, Valenzuela MA, Alonso-Vante N (2013) Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites. Catal Today 202:36–43. https://doi.org/10.1016/j.cattod.2012.03.033

    Article  CAS  Google Scholar 

  64. Estudillo-Wong LA, Luo Y, Díaz-Real JA, Alonso-Vante N (2016) Enhanced oxygen reduction reaction stability on platinum nanoparticles photo-deposited onto oxide-carbon composites. Appl Catal B: Environ 187:291–300. https://doi.org/10.1016/j.apcatb.2016.01.030

    Article  CAS  Google Scholar 

  65. Ma J, Habrioux A, Alonso-Vante N (2013) Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite. J Solid State Electrochem 17(7):1913–1921. https://doi.org/10.1007/s10008-013-2046-y

    Article  CAS  Google Scholar 

  66. Ma J, Valenzuela E, Gago AS, Rousseau J, Habrioux A, Alonso-Vante N (2014) Photohole trapping induced platinum cluster nucleation on the surface of TiO2 nanoparticles. J Phys Chem C 118(2):1111–1117. https://doi.org/10.1021/jp410846k

    Article  CAS  Google Scholar 

  67. Harada M, Einaga H (2006) Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions. Langmuir 22(5):2371–2377

    Article  CAS  Google Scholar 

  68. Bickley RI, Jayanty RKM (1974) Photo-adsorption and photo-catalysis on titanium dioxide surfaces. Photo-adsorption of oxygen and the photocatalyzed oxidation of isopropanol. Faraday Discuss Chem Soc 58:194–204. https://doi.org/10.1039/DC9745800194

    Article  Google Scholar 

  69. Maillard F, Savinova ER, Simonov PA, Zaikovskii VI, Stimming U (2004) Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported Pt nanoparticles: Interparticle versus intraparticle heterogeneity. J Phys Chem B 108(46):17893–17904

    Article  CAS  Google Scholar 

  70. Herrero E, Chen Q-S, Hernandez J, Sun S-G, Feliu JM (2011) Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects. Phys Chem Chem Phys 13(37):16762–16771. https://doi.org/10.1039/C1CP21909J

    Article  CAS  PubMed  Google Scholar 

  71. Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68(10):2772–2778

    Article  CAS  Google Scholar 

  72. Bagus PS, Pacchioni G (1992) The contribution of metal sp electrons to the chemisorption of CO: theoretical studies of CO on Li, Na, and Cu. Surf Sci 278(3):427–436. https://doi.org/10.1016/0039-6028(92)90678-Y

    Article  CAS  Google Scholar 

  73. Campos-Roldán CA, Ramos-Sánchez G, Gonzalez-Huerta RG, Vargas García JR, Balbuena PB, Alonso-Vante N (2016) Influence of sp3–sp2 carbon nanodomains on metal/support interaction, catalyst durability, and catalytic activity for the oxygen reduction reaction. ACS Appl Mater Interfaces 8:23260–23269. https://doi.org/10.1021/acsami.6b06886

    Article  CAS  PubMed  Google Scholar 

  74. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326. https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  75. Pan F, Jin J, Fu X, Liu Q, Zhang J (2013) Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS Appl Mater Interfaces 5(21):11108–11114. https://doi.org/10.1021/am403340f

    Article  CAS  PubMed  Google Scholar 

  76. Fei H, Ye R, Ye G, Gong Y, Peng Z, Fan X, Samuel ELG, Ajayan PM, Tour JM (2014) Boron- and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 8(10):10837–10843. https://doi.org/10.1021/nn504637y

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Cao X, Ping J, Wang Y, Lin T, Huang X, Ma Q, Wang F, He C, Zhang H (2015) Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale 7(21):9394–9398. https://doi.org/10.1039/C4NR06631F

    Article  CAS  PubMed  Google Scholar 

  78. He D, Jiang Y, Lv H, Pan M, Mu S (2013) Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl Catal B: Environ 132–133:379–388. https://doi.org/10.1016/j.apcatb.2012.12.005

    Article  CAS  Google Scholar 

  79. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299. https://doi.org/10.1021/ja201269b

    Article  CAS  PubMed  Google Scholar 

  80. Wang D-Y, Gong M, Chou H-L, Pan C-J, Chen H-A, Wu Y, Lin M-C, Guan M, Yang J, Chen C-W, Wang Y-L, Hwang B-J, Chen C-C, Dai H (2015) Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc 137(4):1587–1592. https://doi.org/10.1021/ja511572q

    Article  CAS  PubMed  Google Scholar 

  81. Sreekuttan MU, Campos-Roldan CA, Mora-Hernandez JM, Luo Y, Estudillo-Wong LA, Alonso-Vante N (2015) The effect of carbon-based substrates onto non-precious and precious electrocatalytic centers. ECS Trans 69(17):35–42. https://doi.org/10.1149/06917.0035ecst

    Article  CAS  Google Scholar 

  82. Kasuya D, Yudasaka M, Takahashi K, Kokai F, Iijima S (2002) Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J Phys Chem B 106(19):4947–4951. https://doi.org/10.1021/jp020387n

    Article  CAS  Google Scholar 

  83. Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2(12):2538–2549. https://doi.org/10.1039/C0NR00387E

    Article  CAS  PubMed  Google Scholar 

  84. Unni SM, Mora-Hernandez JM, Kurungot S, Alonso-Vante N (2015) CoSe2 supported on nitrogen-doped carbon nanohorns as a methanol-tolerant cathode for air-breathing microlaminar flow fuel cells. ChemElectroChem 2(9):1339–1345. https://doi.org/10.1002/celc.201500154

    Article  CAS  Google Scholar 

  85. Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036. https://doi.org/10.1021/ja3089923

    Article  CAS  PubMed  Google Scholar 

  86. Long X, Li J, Xiao S, Yan K, Wang Z, Chen H, Yang S (2014) A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew Chem Int Ed 53(29):7584–7588. https://doi.org/10.1002/anie.201402822

    Article  CAS  Google Scholar 

  87. Singh SK, Dhavale VM, Kurungot S (2015) Surface-Tuned Co3O4 nanoparticles dispersed on nitrogen-doped graphene as an efficient cathode electrocatalyst for mechanical rechargeable zinc-air battery application. ACS Appl Mater Interfaces 7(38):21138–21149. https://doi.org/10.1021/acsami.5b04865

    Article  CAS  PubMed  Google Scholar 

  88. Singh SK, Kumar D, Dhavale VM, Pal S, Kurungot S (2016) Strategic preparation of efficient and durable NiCo alloy supported N-doped porous graphene as an oxygen evolution electrocatalyst: a theoretical and experimental investigation. Adv Mater Interfaces 3(20):n/a–n/a. https://doi.org/10.1002/admi.201600532

    Article  Google Scholar 

  89. Gao Y, Liang Y, Chambers SA (1996) Thermal stability and the role of oxygen vacancy defects in strong metal support interaction—Pt on Nb-doped TiO2(100). Surf Sci 365(3):638–648. https://doi.org/10.1016/0039-6028(96)00763-7

    Article  CAS  Google Scholar 

  90. Ioroi T, Siroma Z, Fujiwara N, S-i Yamazaki, Yasuda K (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7(2):183–188. https://doi.org/10.1016/j.elecom.2004.12.007

    Article  CAS  Google Scholar 

  91. Ioroi T, Senoh H, S-i Yamazaki, Siroma Z, Fujiwara N, Yasuda K (2008) Stability of corrosion-resistant magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J Electrochem Soc 155(4):B321–B326. https://doi.org/10.1149/1.2833310

    Article  CAS  Google Scholar 

  92. Shi F, Baker LR, Hervier A, Somorjai GA, Komvopoulos K (2013) Tuning the electronic structure of titanium oxide support to enhance the electrochemical activity of platinum nanoparticles. Nano Lett 13(9):4469–4474. https://doi.org/10.1021/nl402392u

    Article  CAS  PubMed  Google Scholar 

  93. Gao Y, Hou M, Shao Z, Zhang C, Qin X, Yi B (2014) Preparation and characterization of Ti0.7Sn0.3O2 as catalyst support for oxygen reduction reaction. J Energy Chem 23(3):331–337. https://doi.org/10.1016/S2095-4956(14)60155-8

    Article  CAS  Google Scholar 

  94. Kumar A, Ramani V (2014) Strong metal-support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catal 4(5):1516–1525. https://doi.org/10.1021/cs500116h

    Article  CAS  Google Scholar 

  95. Bendova M, Gispert-Guirado F, Hassel AW, Llobet E, Mozalev A (2017) Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: paradoxes and challenges. Nano Energy 33:72–87. https://doi.org/10.1016/j.nanoen.2017.01.029

    Article  CAS  Google Scholar 

  96. Abadias G, Gago AS, Alonso-Vante N (2011) Structural and photoelectrochemical properties of Ti1−xWxO2 thin films deposited by magnetron sputtering. Surf Coat Technol 205(2):S265–S270

    Article  CAS  Google Scholar 

  97. Patil PS, Mujawar SH, Inamdar AI, Shinde PS, Deshmukh HP, Sadale SB (2005) Structural, electrical and optical properties of TiO2 doped WO3 thin films. Appl Surf Sci 252(5):1643–1650

    Article  CAS  Google Scholar 

  98. Wang F, Di Valentin C, Pacchioni G (2012) Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J Phys Chem C 116(16):8901–8909. https://doi.org/10.1021/jp300867j

    Article  CAS  Google Scholar 

  99. Yang Y, Zhan F, Li H, Liu W, Yu S (2017) In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. J Solid State Electrochem 21(8):2231–2240. https://doi.org/10.1007/s10008-017-3569-4

    Article  CAS  Google Scholar 

  100. Zhang X, Zhu H, Guo Z, Wei Y, Wang F (2011) Sulfated SnO2 modified multi-walled carbon nanotubes—a mixed proton–electron conducting support for Pt catalysts in direct ethanol fuel cells. J Power Sour 196(6):3048–3053. https://doi.org/10.1016/j.jpowsour.2010.11.129

    Article  CAS  Google Scholar 

  101. Elezović NR, Babić BM, Radmilović VR, Krstajić NV (2013) Synthesis and characterization of Pt catalysts on SnO2 based supports for oxygen reduction reaction. J Electrochem Soc 160(10):F1151–F1158. https://doi.org/10.1149/2.095310jes

    Article  CAS  Google Scholar 

  102. Rabis A, Kramer D, Fabbri E, Worsdale M, Kötz R, Schmidt TJ (2014) Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic properties. J Phys Chem C 118(21):11292–11302. https://doi.org/10.1021/jp4120139

    Article  CAS  Google Scholar 

  103. Monyoncho EA, Ntais S, Brazeau N, Wu J-J, Sun C-L, Baranova EA (2016) Role of the metal-oxide support in the catalytic activity of Pd nanoparticles for ethanol electrooxidation in alkaline media. ChemElectroChem 3(2):218–227. https://doi.org/10.1002/celc.201500432

    Article  CAS  Google Scholar 

  104. Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115(41):20153–20159. https://doi.org/10.1021/jp2068446

    Article  CAS  Google Scholar 

  105. Estudillo-Wong LA, Ramos-Sanchez G, Calvillo L, Granozzi G, Alonso-Vante N (2017) Support interaction effect of platinum nanoparticles on non-, Y-, Ce-doped anatase and its implication on the ORR in acid and alkaline media. ChemElectroChem 4:3264–3275. https://doi.org/10.1002/celc.201700715

    Article  CAS  Google Scholar 

  106. Armstrong KJ, Elbaz L, Bauer E, Burrell AK, McCleskey TM, Brosha EL (2012) Nanoscale titania ceramic composite supports for PEM fuel cells. J Mater Res 27(15):2046–2054. https://doi.org/10.1557/jmr.2012.169

    Article  CAS  Google Scholar 

  107. Rigdon WA, Huang X (2014) Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports. J Power Sour 272:845–859. https://doi.org/10.1016/j.jpowsour.2014.09.054

    Article  CAS  Google Scholar 

  108. Luo Y, Alonso-Vante N (2017) Application of metal organic framework (MOF) in the electrocatalytic process. In: Electrochemistry: volume 14. R Soc Chem, pp 194–256. https://doi.org/10.1039/9781782622727-00194

  109. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. https://doi.org/10.1039/B800489G

    Article  CAS  PubMed  Google Scholar 

  110. Hassel A, Schultze JW (2003) Passivity of metals, alloys, and semiconductors. In: Bard AJ, Frankel GS, Stratmann M (eds) Encyclopedia of electrochemistry. Corrosion and oxide films, vol 4. Wiley-VCH, pp 216–270

    Google Scholar 

  111. Lana Villarreal T (2004) Depuración de aguas por métodos fotoelectroquímicos. Ph.D. thesis, The University of Navarra and The University of Poitiers

    Google Scholar 

  112. Choi Y-G, Sakai G, Shimanoe K, Miura N, Yamazoe N (2002) Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method. Sens Actuators B: Chem 87(1):63–72. https://doi.org/10.1016/S0925-4005(02)00218-6

    Article  CAS  Google Scholar 

  113. Bargougui R, Pichavant A, Hochepied JF, Berger MH, Gadri A, Ammar S (2016) Synthesis and characterization of SnO2, TiO2 and Ti0.5Sn0.5O2 nanoparticles as efficient materials for photocatalytic activity. Opt Mater 58 (Supplement C):253–259. doi:https://doi.org/10.1016/j.optmat.2016.05.026

    Article  CAS  Google Scholar 

  114. Janotti A, Varley JB, Lyons JL, Van de Walle CG (2012) Controlling the conductivity in oxide semiconductors. In: Wu J, Cao J, Han W-Q, Janotti A, Kim H-C (eds) Functional metal oxide nanostructures, vol 149 Springer series in materials science. Springer Berlin Heidelberg, Springer New York Dordrecht Heidelberg London, pp 23–35

    Google Scholar 

  115. Varley JB, Peelaers H, Janotti A, Walle CGVd (2011) Hydrogenated cation vacancies in semiconducting oxides. J Phys: Condens Matter 23(33):334212

    CAS  Google Scholar 

  116. Van de Walle CG (2003) Hydrogen as a shallow center in semiconductors and oxides. physica status solidi (b) 235(1):89–95. https://doi.org/10.1002/pssb.200301539

    Article  CAS  Google Scholar 

  117. Łaniecki M, Małecka-Grycz M, Domka F (2000) Water–gas shift reaction over sulfided molybdenum catalysts: I. Alumina, titania and zirconia-supported catalysts. Appl Catal A-Gen 196(2):293–303. doi:https://doi.org/10.1016/S0926-860X(99)00480-9

    Article  Google Scholar 

  118. Idakiev V, Yuan ZY, Tabakova T, Su BL (2005) Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Appl Catal A-Gen 281(1–2):149–155. https://doi.org/10.1016/j.apcata.2004.11.021

    Article  CAS  Google Scholar 

  119. Ketchie WC, Maris EP, Davis RJ (2007) In-situ X-ray absorption spectroscopy of supported Ru catalysts in the aqueous phase. Chem Mater 19(14):3406–3411

    Article  CAS  Google Scholar 

  120. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7(4):344–366. https://doi.org/10.1016/j.nantod.2012.06.012

    Article  CAS  Google Scholar 

  121. Reddy BM, Khan A (2005) Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal Rev 47(2):257–296. https://doi.org/10.1081/CR-200057488

    Article  CAS  Google Scholar 

  122. Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc. https://doi.org/10.1021/ja904810h

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hayden BE, Pletcher D, Suchsland J-P, Williams LJ (2009) The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys Chem Chem Phys 11(10):1564–1570

    Article  CAS  Google Scholar 

  124. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sour 208:96–119. https://doi.org/10.1016/j.jpowsour.2012.02.011

    Article  CAS  Google Scholar 

  125. Gebauer C, Jusys Z, Wassner M, Hüsing N, Behm RJ (2014) Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles. ChemPhysChem 15(10):2094–2107. https://doi.org/10.1002/cphc.201402019

    Article  CAS  PubMed  Google Scholar 

  126. Kim J-H, Chang S, Kim Y-T (2014) Compressive strain as the main origin of enhanced oxygen reduction reaction activity for Pt electrocatalysts on chromium-doped titania support. Appl Catal B: Environ 158–159:112–118. https://doi.org/10.1016/j.apcatb.2014.04.003

    Article  CAS  Google Scholar 

  127. Savych I, Bernard d’Arbigny J, Subianto S, Cavaliere S, Jones DJ, Rozière J (2014) On the effect of non-carbon nanostructured supports on the stability of Pt nanoparticles during voltage cycling: a study of TiO2 nanofibres. J Power Sour 257:147–155. https://doi.org/10.1016/j.jpowsour.2014.01.112

    Article  CAS  Google Scholar 

  128. Dou M, Hou M, Zhang H, Li G, Lu W, Wei Z, Shao Z, Yi B (2012) A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. Chemsuschem 5(5):945–951. https://doi.org/10.1002/cssc.201100706

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Shrestha S, Mustain WE (2012) Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal 2(3):456–463. https://doi.org/10.1021/cs200657w

    Article  CAS  Google Scholar 

  130. Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7(2):385–393. https://doi.org/10.1039/B411377B

    Article  CAS  Google Scholar 

  131. Roudgar A, Groß A (2003) Local reactivity of thin Pd overlayers on Au single crystals. J Electroanal Chem 548:121–130. https://doi.org/10.1016/S0022-0728(03)00230-4

    Article  CAS  Google Scholar 

  132. Hu S, Scudiero L, Ha S (2014) Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem Commun 38:107–109. https://doi.org/10.1016/j.elecom.2013.11.010

    Article  CAS  Google Scholar 

  133. Chen G, Bare SR, Mallouk TE (2002) Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J Electrochem Soc 149(8):A1092–A1099

    Article  CAS  Google Scholar 

  134. Ho VTT, Pan C-J, Rick J, Su W-N, Hwang B-J (2011) Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133(30):11716–11724. https://doi.org/10.1021/ja2039562

    Article  CAS  PubMed  Google Scholar 

  135. Ho VTT, Pillai KC, Chou H-L, Pan C-J, Rick J, Su W-N, Hwang B-J, Lee J-F, Sheu H-S, Chuang W-T (2011) Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy Environ Sci 4(10):4194–4200

    Article  CAS  Google Scholar 

  136. Stassi A, Gatto I, Baglio V, Passalacqua E, Aricò AS (2013) Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells. Appl Catal B: Environ 142–143:15–24. https://doi.org/10.1016/j.apcatb.2013.05.008

    Article  CAS  Google Scholar 

  137. Zhang F, Pi Y, Cui J, Yang Y, Zhang X, Guan N (2007) Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide. J Phys Chem C 111(9):3756–3761

    Article  CAS  Google Scholar 

  138. Lee K-S, Park I-S, Cho Y-H, Jung D-S, Jung N, Park H-Y, Sung Y-E (2008) Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J Catal 258(1):143–152

    Article  CAS  Google Scholar 

  139. Zhao S, Wangstrom AE, Liu Y, Rigdon WA, Mustain WE (2015) Stability and activity of Pt/ITO electrocatalyst for oxygen reduction reaction in alkaline media. Electrochim Acta 157:175–182. https://doi.org/10.1016/j.electacta.2015.01.030

    Article  CAS  Google Scholar 

  140. Fabbri E, Patru A, Rabis A, Kötz R, Schmidt TJ (2014) Advanced cathode materials for polymer electrolyte fuel cells based on Pt/metal oxides: from model electrodes to catalyst systems. CHIMIA Int J Chem 68(4):217–220. https://doi.org/10.2533/chimia.2014.217

    Article  CAS  Google Scholar 

  141. Fabbri E, Rabis A, Kotz R, Schmidt TJ (2014) Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues. Phys Chem Chem Phys 16(27):13672–13681. https://doi.org/10.1039/C4CP00238E

    Article  CAS  PubMed  Google Scholar 

  142. Malkhandi S, Yangang Y, Rao V, Bund A, Stimming U (2011) Synthesis and electrochemical study of antimony-doped tin oxide supported RuSe catalysts for oxygen reduction reaction. Electrocatalysis 2(1):20–23. https://doi.org/10.1007/s12678-010-0033-y

    Article  CAS  Google Scholar 

  143. Hsieh B-J, Tsai M-C, Pan C-J, Su W-N, Rick J, Chou H-L, Lee J-F, Hwang B-J (2017) Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts. Electrochim Acta 224 (Supplement C):452–459. doi:https://doi.org/10.1016/j.electacta.2016.12.020

    Article  CAS  Google Scholar 

  144. Pan C-J, Tsai M-C, Su W-N, Rick J, Akalework NG, Agegnehu AK, Cheng S-Y, Hwang B-J (2017) Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J Taiwan Inst Chem Eng 74:154–186. https://doi.org/10.1016/j.jtice.2017.02.012

    Article  CAS  Google Scholar 

  145. Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl Catal A-Gen 377:167–173

    Article  CAS  Google Scholar 

  146. Korshunov KV, Tsarev MV, Mokrushin VV, Shapovalov AM, Zabavin EV (2015) Application of impedance spectroscopy to study oxidized powders of titanium hydride. J Alloys Compd 645 Supplement 1:S140–S143. https://doi.org/10.1016/j.jallcom.2015.01.131

    Article  CAS  Google Scholar 

  147. Espinola A, Miguel PM, Salles MR, Pinto AR (1986) Electrical properties of carbons—resistance of powder materials. Carbon 24(3):337–341. https://doi.org/10.1016/0008-6223(86)90235-6

    Article  CAS  Google Scholar 

  148. Fabish TJ, Hair ML (1977) The dependence of the work function of carbon black on surface acidity. J Colloid Interface Sci 62(1):16–23. https://doi.org/10.1016/0021-9797(77)90060-1

    Article  CAS  Google Scholar 

  149. Ioannides T, Verykios XE (1996) Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal-semiconductor contact theory. J Catal 161(2):560–569

    Article  CAS  Google Scholar 

  150. Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  151. Greeley J (2012) Computational studies of trends in electrocatalysis. ECS Trans 45(2):85–95. https://doi.org/10.1149/1.3701970

    Article  CAS  Google Scholar 

  152. Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci 5(11):9246–9256. https://doi.org/10.1039/C2EE21754F

    Article  CAS  Google Scholar 

  153. Ramos-Sanchez G, Balbuena PB (2013) Interactions of platinum clusters with a graphite substrate. Phys Chem Chem Phys 15:11950–11959. https://doi.org/10.1039/c3cp51791h

    Article  CAS  PubMed  Google Scholar 

  154. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102(37):7314–7323. https://doi.org/10.1021/jp981794v

    Article  CAS  Google Scholar 

  155. Ramos-Sánchez G, Balbuena PB (2014) CO adsorption on Pt clusters supported on graphite. J Electroanal Chem 716:23–30. https://doi.org/10.1016/j.jelechem.2013.09.025

    Article  CAS  Google Scholar 

  156. D-e Jiang, Overbury SH, Dai S (2012) Structures and energetics of Pt clusters on TiO2: interplay between metal-metal bonds and metal-oxygen bonds. J Phys Chem C 116(41):21880–21885. https://doi.org/10.1021/jp3072102

    Article  CAS  Google Scholar 

  157. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81(13):2819–2822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso-Vante, N. (2018). Effect of Supports on Catalytic Centers. In: Chalcogenide Materials for Energy Conversion. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89612-0_5

Download citation

Publish with us

Policies and ethics