Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 48))

  • 1369 Accesses

Abstract

Gradient-based optimisation using adjoints is an increasingly common approach for industrial flow applications. For cases where the flow is largely unsteady however, the adjoint method is still not widely used, in particular because of its prohibitive computational cost and memory footprint. Several methods have been proposed to reduce the peak memory usage, such as checkpointing schemes or checkpoint compression, at the price of increasing the computational cost even further. We investigate incomplete checkpointing as an alternative, which reduces memory usage at almost no extra computational cost, but instead offers a trade-off between memory footprint and the fidelity of the model. The method works by storing only selected physical time steps and using interpolation to reconstruct time steps that have not been stored. We show that this is enough to compute sufficiently accurate adjoint sensitivities for many relevant cases, and does not add significantly to the computational cost. The method works for general cases and does not require to identify periodic cycles in the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggren, M.: Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action. SIAM J. Sci. Comput. 19(3), 829–860 (1998)

    Article  MathSciNet  Google Scholar 

  2. Christakopoulos, F., Jones, D., Müller, J.D.: Pseudo-timestepping and verification for automatic differentiation derived CFD codes. Comput. Fluids 46(1), 174 – 179 (2011). https://doi.org/10.1016/j.compfluid.2011.01.039

    Article  MathSciNet  Google Scholar 

  3. Christianson, B.: Reverse accumulation and implicit functions. Optim. Methods Softw. 9(4), 307–322 (1998). https://doi.org/10.1080/10556789808805697

  4. Giles, M., Pierce, N.: Adjoint equations in CFD—duality, boundary conditions and solution behaviour. Am. Inst. Aeronaut. Astronaut. (1997). https://doi.org/10.2514/6.1997-1850

  5. Griewank, A., Walther, A.: Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw. 26(1), 19–45 (2000). https://doi.org/10.1145/347837.347846

    Article  Google Scholar 

  6. Gunzburger, M.: Adjoint equation-based methods for control problems in incompressible, viscous flows. In: Flow, Turbulence and Combustion, vol. 65, pp. 249–272. Kluwer Academic Publishers (2000). https://doi.org/10.1023/A:1011455900396

  7. Hascoet, L., Pascual, V.: The Tapenade automatic differentiation tool: Principles, model, and specification. ACM Trans. Math. Softw. 39(3), 20:1–20:43 (2013). https://doi.org/10.1145/2450153.2450158

    Article  Google Scholar 

  8. Heuveline, V., Walther, A.: Online checkpointing for parallel adjoint computation in PDEs: application to goal-oriented adaptivity and flow control. In: Euro-Par 2006 Parallel Processing, pp. 689–699. Springer (2006)

    Chapter  Google Scholar 

  9. Hückelheim, J., Xu, S., Gugala, M., Müller, J.D.: Time-averaged steady vs. unsteady adjoint: a comparison for cases with mild unsteadiness. In: 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (2015). https://doi.org/10.2514/6.2015-1953

  10. Jameson, A.: Aerodynamic shape optimization using the adjoint method. In: Lectures at the Von Karman Institute, Brussels (2003)

    Google Scholar 

  11. Krakos, J.A., Darmofal, D.L.: Effect of small-scale output unsteadiness on adjoint-based sensitivity. AIAA J. 48(11), 2611–2623 (2010). https://doi.org/10.2514/1.J050412

    Article  Google Scholar 

  12. Lee, B.J., Liou, M.S.: Unsteady adjoint approach for design optimization of flapping airfoils. AIAA J. 50(11), 2460–2475 (2012). https://doi.org/10.2514/1.J051663

    Article  Google Scholar 

  13. Nadarajah, S., Jameson, A.: Optimum shape design for unsteady three-dimensional viscous flows using a nonlinear frequency-domain method. J. Aircr. 44(5), 1513–1527 (2007). https://doi.org/10.2514/1.27601

    Article  Google Scholar 

  14. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific floating-point data. In: Proceedings of the Data Compression Conference, DCC ’06, pp. 133–142. IEEE Computer Society, Washington, DC, USA (2006). https://doi.org/10.1109/DCC.2006.35

  15. Rumpfkeil, M., Zingg, D.: A general framework for the optimal control of unsteady flows with applications. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2007). https://doi.org/10.2514/6.2007-1128

  16. Schneider, T.M., Eckhardt, B., Yorke, J.A.: Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034, 502 (2007). https://doi.org/10.1103/PhysRevLett.99.034502

  17. Tim Wildey, E.C.C., Shadid, J.: Adjoint based a posteriori error estimates using data compression. In: Moitinho de Almeida, C.T.J.P., Díez, P., Parés, N. (eds.) VI International Conference on Adaptive Modeling and Simulation (2013)

    Google Scholar 

  18. Wang, Q., Hu, R., Blonigan, P.: Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. J. Comput. Phys. 267(0), 210–224 (2014). https://doi.org/10.1016/j.jcp.2014.03.002

    Article  MathSciNet  Google Scholar 

  19. Xu, S., Jahn, W., Müller, J.D.: CAD-based shape optimisation with CFD using a discrete adjoint. Int. J. Numer. Methods Fluids 74(3), 153–168 (2014)

    Article  MathSciNet  Google Scholar 

  20. Xu, S., Radford, D., Meyer, M., Müller, J.D.: Stabilisation of discrete steady adjoint solvers. J. Comput. Phys. 299, 175–195 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no [317006].

This research utilised Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Christian Hückelheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hückelheim, J.C., Müller, JD. (2019). Checkpointing with Time Gaps for Unsteady Adjoint CFD. In: Minisci, E., Vasile, M., Periaux, J., Gauger, N., Giannakoglou, K., Quagliarella, D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-89988-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89988-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89986-2

  • Online ISBN: 978-3-319-89988-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics