Skip to main content

Microbiome and Gut Immunity: Innate Immune Cells

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease

Abstract

The innate immune system not only serves as a first line of defense against infections with pathogenic microorganisms but also plays an important role in the balanced interplay with the intestinal microbiota. Distinct subsets of innate immune cells such as macrophages, dendritic cells, granulocytes, mast cells, and innate lymphoid cells are found spread throughout the intestinal tissue as well as organized in tissue-specific lymphoid structures. These cells constantly survey the intestinal tissue for the presence of live microbes to prevent the spread of invading microbes and fine-tune the intestinal barrier. Specifically, metabolites from the commensal microbiota such as short-chain fatty acids have been identified to maintain tolerogenic conditions in the intestine, e.g., promoting regulatory T cells and down-modulating pro-inflammatory signaling pathways. In turn, aberrant recognition and handling of commensal microbes by the innate immune system or the excessive immune activation after pathogen sensing have been demonstrated to promote inflammatory conditions such as inflammatory bowel diseases in the intestine. Hence, the detailed understanding of the interplay between the microbiota and innate immune system may enable novel therapeutic interventions to promote human health and, specifically, to prevent auto-inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bain, C. C., Bravo-Blas, A., Scott, C. L., et al. (2014). Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 15, 929–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, S., Groh, V., Wu, J., et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285, 727–729.

    Article  CAS  PubMed  Google Scholar 

  • Beura, L. K., Hamilton, S. E., Bi, K., et al. (2016). Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 532, 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff, S. C. (2009). Physiological and pathophysiological functions of intestinal mast cells. Seminars in Immunopathology, 31, 185–205.

    Article  CAS  PubMed  Google Scholar 

  • Björkström, N. K., Ljunggren, H.-G., & Michaëlsson, J. (2016). Emerging insights into natural killer cells in human peripheral tissues. Nature Reviews Immunology, 16, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Britanova, L., & Diefenbach, A. (2017). Interplay of innate lymphoid cells and the microbiota. Immunological Reviews, 279, 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Brubaker, S. W., Bonham, K. S., Zanoni, I., & Kagan, J. C. (2015). Innate immune pattern recognition: A cell biological perspective. Annual Review of Immunology, 33, 257–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryceson, Y. T., March, M. E., Ljunggren, H.-G., & Long, E. O. (2006). Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood, 107, 159–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonomo, E. L., Cowardin, C. A., Wilson, M. G., et al. (2016). Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Reports, 16, 432–443.

    Article  CAS  PubMed  Google Scholar 

  • Cebra, J. J., Periwal, S. B., Lee, G., et al. (1998). Development and maintenance of the gut-associated lymphoid tissue (GALT): The roles of enteric bacteria and viruses. Developmental Immunology, 6, 13–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerovic, V., Houston, S. A., Scott, C. L., et al. (2013). Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 6, 104–113.

    Article  CAS  PubMed  Google Scholar 

  • Cerovic, V., Bain, C. C., Mowat, A. M., & Milling, S. W. F. (2014). Intestinal macrophages and dendritic cells: What’s the difference? Trends in Immunology, 35, 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Cerwenka, A., Bakker, A. B., McClanahan, T., et al. (2000). Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity, 12, 721–727.

    Article  CAS  PubMed  Google Scholar 

  • Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, 2247–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapuy, L., Bsat, M., Mehta, H., et al. (2014). Basophils increase in Crohn disease and ulcerative colitis and favor mesenteric lymph node memory TH17/TH1 response. Journal of Allergy and Clinical Immunology, 134, 978–981.e1.

    Article  CAS  PubMed  Google Scholar 

  • Chu, V. T., Beller, A., Rausch, S., et al. (2014). Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity, 40, 582–593 d.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, T. B., Davis, K. M., Lysenko, E. S., et al. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine, 16, 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinides, M. G., McDonald, B. D., Verhoef, P. A., & Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature, 508, 397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cording, S., Fleissner, D., Heimesaat, M. M., et al. (2013). Commensal microbiota drive proliferation of conventional and Foxp3(+) regulatory CD4(+) T cells in mesenteric lymph nodes and Peyer’s patches. European Journal of Microbiology and Immunology, 3, 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daussy, C., Faure, F., Mayol, K., et al. (2014). T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. The Journal of Experimental Medicine, 211, 563–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbach, A., & Raulet, D. H. (2003). Innate immune recognition by stimulatory immunoreceptors. Current Opinion in Immunology, 15, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach, A., Jamieson, A. M., Liu, S. D., et al. (2000). Ligands for the murine NKG2D receptor: Expression by tumor cells and activation of NK cells and macrophages. Nature Immunology, 1, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach, A., Colonna, M., & Koyasu, S. (2014). Development, differentiation, and diversity of innate lymphoid cells. Immunity, 41, 354–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl, G., & Lochner, M. (2009). The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunology, 2, 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Elinav, E., Strowig, T., Kau, A. L., et al. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145, 745–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erny, D., Hrabě de Angelis, A. L., Jaitin, D., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18, 965–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung, T. C., Bessman, N. J., Hepworth, M. R., et al. (2016). Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity, 44, 634–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganal, S. C., Sanos, S. L., Kallfass, C., et al. (2012). Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity, 37, 171–186.

    Article  CAS  PubMed  Google Scholar 

  • Gieseck, R. L., Wilson, M. S., & Wynn, T. A. (2018). Type 2 immunity in tissue repair and fibrosis. Nature Reviews Immunology, 18, 62–76.

    Article  CAS  PubMed  Google Scholar 

  • Gomez de Agüero, M., Ganal-Vonarburg, S. C., Fuhrer, T., et al. (2016). The maternal microbiota drives early postnatal innate immune development. Science, 351, 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Gomez, M. R., Talke, Y., Hofmann, C., et al. (2014). Basophils control T-cell responses and limit disease activity in experimental murine colitis. Mucosal Immunology, 7, 188–199.

    Article  CAS  PubMed  Google Scholar 

  • Gorjifard, S., & Goldszmid, R. S. (2016). Microbiota-myeloid cell crosstalk beyond the gut. Journal of Leukocyte Biology, 100, 865–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra, N., Tan, Y. X., Joncker, N. T., et al. (2008). NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity, 28, 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, D. A., Siracusa, M. C., Abt, M. C., et al. (2012). Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Medicine, 18, 538–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyler, T., Klose, C. S. N., Souabni, A., et al. (2012). The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity, 37, 634–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbles, A. A., Lu, B., Friend, D. S., et al. (2002). The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proceedings of the National Academy of Sciences of the United States of America, 99, 1479–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, W., Xie, G., & Jia, W. (2017). Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 5, 172ra122.

    Google Scholar 

  • Joeris, T., Müller-Luda, K., Agace, W. W., & Mowat, A. M. (2017). Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunology, 10, 845–864.

    Article  CAS  PubMed  Google Scholar 

  • Kärre, K., Ljunggren, H. G., Piontek, G., & Kiessling, R. (1986). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319, 675–678.

    Article  PubMed  Google Scholar 

  • Khosravi, A., Yáñez, A., Price, J. G., et al. (2014). Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host & Microbe, 15, 374–381.

    Article  CAS  Google Scholar 

  • Kiss, E. A., & Vonarbourg, C. (2012). Aryl hydrocarbon receptor: A molecular link between postnatal lymphoid follicle formation and diet. Gut Microbes, 3, 577–582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klose, C. S. N., Flach, M., Möhle, L., et al. (2014). Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell, 157, 340–356. https://doi.org/10.1016/j.cell.2014.03.030.

    Article  PubMed  CAS  Google Scholar 

  • Knoop, K. A., Gustafsson, J. K., McDonald, K. G., et al. (2017). Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2, eaao1314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunii, J., Takahashi, K., Kasakura, K., et al. (2011). Commensal bacteria promote migration of mast cells into the intestine. Immunobiology, 216, 692–697.

    Article  CAS  PubMed  Google Scholar 

  • Lavin, Y., Mortha, A., Rahman, A., & Merad, M. (2015). Regulation of macrophage development and function in peripheral tissues. Nature Reviews Immunology, 15, 731–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiding, J. W. (2017). Neutrophil evolution and their diseases in humans. Frontiers in Immunology, 8, 1009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelouard, H., Fallet, M., de Bovis, B., et al. (2012). Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology, 142, 592–601.e3.

    Article  CAS  PubMed  Google Scholar 

  • Luu, T. T., Ganesan, S., Wagner, A. K., et al. (2016). Independent control of natural killer cell responsiveness and homeostasis at steady-state by CD11c+ dendritic cells. Scientific Reports, 6, 37996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes, J. G., Tattoli, I., & Girardin, S. E. (2007). The intestinal epithelial barrier: How to distinguish between the microbial flora and pathogens. Seminars in Immunology, 19, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Masterson, J. C., McNamee, E. N., Jedlicka, P., et al. (2011). CCR3 blockade attenuates eosinophilic ileitis and associated remodeling. The American Journal of Pathology, 179, 2302–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDole, J. R., Wheeler, L. W., McDonald, K. G., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature, 483, 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merad, M., Sathe, P., Helft, J., et al. (2013). The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563–604.

    Article  CAS  PubMed  Google Scholar 

  • Mori, Y., Iwasaki, H., Kohno, K., et al. (2009). Identification of the human eosinophil lineage-committed progenitor: Revision of phenotypic definition of the human common myeloid progenitor. The Journal of Experimental Medicine, 206, 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mowat, A. M., Scott, C. L., & Bain, C. C. (2017). Barrier-tissue macrophages: Functional adaptation to environmental challenges. Nature Medicine, 23, 1258–1270.

    Article  CAS  PubMed  Google Scholar 

  • Niess, J. H., Brand, S., Gu, X., et al. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 307, 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo, T., Tsuda, M., Suzuki, S., et al. (1999). Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment. Scandinavian Journal of Immunology, 49, 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, H. (2016). Intestinal M cells. Journal of Biochemistry, 159, 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Palm, N. W., & Medzhitov, R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 227, 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Park, J.-S., Lee, E.-J., Lee, J.-C., et al. (2007). Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-kappaB and ERK signaling pathways. International Immunopharmacology, 7, 70–77.

    Article  CAS  PubMed  Google Scholar 

  • Parlato, M., & Yeretssian, G. (2014). NOD-like receptors in intestinal homeostasis and epithelial tissue repair. International Journal of Molecular Sciences, 15, 9594–9627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patten, D. A., & Collett, A. (2013). Exploring the immunomodulatory potential of microbial-associated molecular patterns derived from the enteric bacterial microbiota. Microbiology (Reading, England), 159, 1535–1544.

    Article  CAS  Google Scholar 

  • Platt, A. M., Bain, C. C., Bordon, Y., et al. (2010). An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. Journal of Immunology, 184, 6843–6854.

    Article  CAS  Google Scholar 

  • Raab, Y., Fredens, K., Gerdin, B., & Hallgren, R. (1998). Eosinophil activation in ulcerative colitis: Studies on mucosal release and localization of eosinophil granule constituents. Digestive Diseases and Sciences, 43, 1061–1070.

    Article  CAS  PubMed  Google Scholar 

  • Rathinam, V. A. K., & Fitzgerald, K. A. (2016). Inflammasome complexes: Emerging mechanisms and effector functions. Cell, 165, 792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raulet, D. H., Vance, R. E., & McMahon, C. W. (2001). Regulation of the natural killer cell receptor repertoire. Annual Review of Immunology, 19, 291–330.

    Article  CAS  PubMed  Google Scholar 

  • Rivollier, A., He, J., Kole, A., et al. (2012). Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. The Journal of Experimental Medicine, 209, 139–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, S. J., & Girardin, S. E. (2013). Nod-like receptors in intestinal host defense: Controlling pathogens, the microbiota, or both? Current Opinion in Gastroenterology, 29, 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Rosshart, S. P., Vassallo, B. G., Angeletti, D., et al. (2017). Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell, 171, 1015–1028.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, S. L., Gold, M. J., Willing, B. P., et al. (2013). Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes, 4, 158–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitoh, O., Kojima, K., Sugi, K., et al. (1999). Fecal eosinophil granule-derived proteins reflect disease activity in inflammatory bowel disease. The American Journal of Gastroenterology, 94, 3513–3520.

    Article  CAS  PubMed  Google Scholar 

  • Smythies, L. E., Shen, R., Bimczok, D., et al. (2010). Inflammation anergy in human intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB inactivation. The Journal of Biological Chemistry, 285, 19593–19604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenberg, G. F., & Artis, D. (2012). Innate lymphoid cell interactions with microbiota: Implications for intestinal health and disease. Immunity, 37, 601–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St John, A. L., & Abraham, S. N. (2013). Innate immunity and its regulation by mast cells. Journal of Immunology, 190, 4458–4463.

    Article  CAS  Google Scholar 

  • Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of Experimental Medicine, 137, 1142–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, M. K., & Cookson, B. T. (2016). Evasion and interference: Intracellular pathogens modulate caspase-dependent inflammatory responses. Nature Reviews Microbiology, 14, 346–359.

    Article  CAS  PubMed  Google Scholar 

  • Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481, 278–286.

    Article  CAS  PubMed  Google Scholar 

  • Swiecki, M., Miller, H. L., Sesti-Costa, R., et al. (2017). Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state. Mucosal Immunology, 10, 936–945.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., McKenzie, C., Potamitis, M., et al. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.

    Article  CAS  PubMed  Google Scholar 

  • Thaiss, C. A., Levy, M., Itav, S., & Elinav, E. (2016a). Integration of innate immune signaling. Trends in Immunology, 37, 84–101.

    Article  CAS  PubMed  Google Scholar 

  • Thaiss, C. A., Zmora, N., Levy, M., & Elinav, E. (2016b). The microbiome and innate immunity. Nature, 535, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, Y., Kayama, H., Jeon, S. G., et al. (2010). Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. International Immunology, 22, 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Walton, K. L. W., He, J., Kelsall, B. L., et al. (2006). Dendritic cells in germ-free and specific pathogen-free mice have similar phenotypes and in vitro antigen presenting function. Immunology Letters, 102, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Xia, P., Chen, Y., et al. (2017). Regulatory innate lymphoid cells control innate intestinal inflammation. Cell, 171, 201–216.e18.

    Article  CAS  PubMed  Google Scholar 

  • Weber, B., Saurer, L., Schenk, M., et al. (2011). CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions. European Journal of Immunology, 41, 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Weller, P. F., & Spencer, L. A. (2017). Functions of tissue-resident eosinophils. Nature Reviews Immunology, 17, 746–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welty, N. E., Staley, C., Ghilardi, N., et al. (2013). Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. The Journal of Experimental Medicine, 210, 2011–2024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters, M. M., Vicario, M., & Santos, J. (2016). The role of mast cells in functional GI disorders. Gut, 65, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Li, F., Harly, C., et al. (2015). TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nature Immunology, 16, 1044–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Strowig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strowig, T., Thiemann, S., Diefenbach, A. (2018). Microbiome and Gut Immunity: Innate Immune Cells. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_8

Download citation

Publish with us

Policies and ethics