Skip to main content

Heat Shock Proteins and Endoplasmic Reticulum Stress

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

Abstract

The endoplasmic reticulum (ER) is a dynamic as well as an intricate organelle that carries out diverse essential functions within the cell. The efficient functions of the ER regulate the cellular processes and maintain cell homeostasis. When this dynamic equilibrium gets imbalanced due to perturbations in the ER functions, a condition termed ER stress occurs. ER stress accumulates and aggregates unfolded proteins within the ER lumen. An evolutionarily conserved signal transduction mechanism called unfolded protein response (UPR) recuperates the ER function and proteostasis in the ER. A diverse group of heat shock proteins (HSP) has been implicated in this ER stress response. In recent years, studies have revealed the roles of HSP in sensing the ER stress and activating the three axes of UPR. In addition, the HSP are also responsible for the ER associated degradation of unfolded proteins when ER stress persists for a long time. The HSP in ER stress have been implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, aging, diabetes and obesity. In the present chapter, we have summarized the advances made in the manifold roles of HSP that govern ER stress signaling in health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Esser C, Höhfeld J (2003) BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Allagui MS, Nciri R, Rouhaud MF, Murat JC, El Feki A, Croute F, Vincent C (2009) Long-term exposure to low lithium concentrations stimulates proliferation, modifies stress protein expression pattern and enhances resistance to oxidative stress in SH-SY5Y cells. Neurochem Res 34:453–462

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  CAS  PubMed  Google Scholar 

  • Argon Y, Simen BB (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Bio 10:495–505

    Article  CAS  Google Scholar 

  • Aridor M, Balch WE (1999) Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5:745–751

    Article  CAS  PubMed  Google Scholar 

  • Arndt V, Daniel C, Nastainczyk W, Alberti S, Höhfeld J (2005) BAG-2 Acts as an Inhibitor of the Chaperone-associated Ubiquitin Ligase CHIP. Mol Boil cell 16:5891–5900

    Article  CAS  Google Scholar 

  • Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K (2011) The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149:507–518

    Article  CAS  PubMed  Google Scholar 

  • Aueviriyavit S, Phummiratch D, Kulthong K, Maniratanachote R (2012) Titanium dioxide nanoparticles-mediated in vitro cytotoxicity does not induce Hsp70 and Grp78 expression in human bronchial epithelial A549 cells. Biol Trace Elem Res 149:123–132

    Article  CAS  PubMed  Google Scholar 

  • Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291:H1411–H1420

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, O’Hare P (2007) Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal 9:2305–2321

    Article  CAS  PubMed  Google Scholar 

  • Baindur-Hudson S, Edkins AL, Blatch GL (2015) Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Suncell Biochem 78:69–90

    Google Scholar 

  • Baldridge RD, Rapoport TA (2016) Autoubiquitination of the Hrd1 ligase triggers protein retro translocation in ERAD. Cell 166:394–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banhegyi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, Li J, Mao C, Margittai E, Ni M, Paschen W, Piccirella S, Senesi S, Sitia R, Wang M, Yang W (2007) Endoplasmic reticulum stress. Ann N Y Acad Sci 1113:58–71

    Article  CAS  PubMed  Google Scholar 

  • Barbagallo I, Parenti R, Zappalà A, Vanella L, Tibullo D, Pepe F, Onni T, Li Volti G (2015) Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma. Acta Histochem 117:705–711

    Article  CAS  PubMed  Google Scholar 

  • Bauer I, Rensing H, Florax A, Ulrich C, Pistorius G, Red H, Bauer M (2003) Expression pattern and regulation of heme oxygenase-1/heat shock protein 32 in human liver cells. Shock 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (Heat Shock) proteins molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  CAS  PubMed  Google Scholar 

  • Bermak JC, Li M, Bullock C, Zhou QY (2001) Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 3:492–498

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Wang X, Novoa I, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1 β-deficient mice. J Clin Invest 107:585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binet F, Chiasson S, Girard D (2010) Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. Int Immunopharmacol 10:508–512

    Article  CAS  PubMed  Google Scholar 

  • Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, Cheung P (2008) Merali S.Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57:2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274:1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Bousette N, Chugh S, Fong V, Isserlin R, Kim KH, Volchuk A, Backx PH, Liu P, Kislinger T, Maclennan DH, Emili A, Gramolini AO (2010) Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by a-crystallin-B. Proc Natl Acad Sci U S A 107:18481–18486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618

    Article  CAS  PubMed  Google Scholar 

  • Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  CAS  PubMed  Google Scholar 

  • Bruchmann A, Roller C, Walther TV, Schäfer G, Lehmusvaara S, Visakorpi T, Klocker H, Cato ACB, Maddalo D (2013) Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis. BMC Cancer 13(1):96

    Google Scholar 

  • Brush MH, Weiser DC, Shenolikar S (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23:1292–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky JL (2007) The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 404(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticuum: Brothers in Arms. Molecular Cell. 40:238–252

    Article  CAS  PubMed  Google Scholar 

  • Burke B, Ellenberg J (2002) Remodelling the walls of the nucleus. Nat Rev Mol Cell Biol 3:487–497

    Article  CAS  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Lambert H, Landry J (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Currie RW (2006) Small interfering RNA knocks down heat shock factor-1 (HSF-1) and exacerbates pro-inflammatory activation of NFkappaB and AP-1 in vascular smooth muscle cells. Cardiovasc Res 69:66–75

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shen J, Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045–13052

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Huo R, Tong Y, Sheng Y, Liu HB, Gao X, Nakajima O, Yang BF, Dong DL (2011a) Systemic heme oxygenase-1 transgenic overexpression aggravates pressure overload-induced cardiac hypertrophy in mice. Cell Physiol Biochem 28:25–32

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Dai RY, Duan CY, Liu YP, Chen SK, Yan DM, Chen CN, Wei M, Li H (2011b) Unfolded protein response suppresses cisplatin-induced apoptosis via autophagy regulation in human hepatocellular carcinoma cells. Folia Biol (Praha) 57:87–95

    CAS  Google Scholar 

  • Chen S, Novick P, Ferro-Novick S (2013) ER structure and function. Curr Opin Cell Biol 25:428–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KC, Qu S, Chowdhury S, Noxon IC, Schonhoft JD, Plate L, Powers ET, Kelly JW, Lander GC, Wiseman RL (2017) The endoplasmic reticulum HSP40 co-chaperon ERdj3/DNAJB11 assembles and functions as a tetramer. EMBO J 36:2296–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien CY, Chien CT, Wang SS (2014) Progressive thermo pre conditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and anti-apoptotic mechanisms. J Thorac Cardiovas Surg 148:705–713

    Article  CAS  Google Scholar 

  • Choy MS, Chen MJ, Manikandan J, Peng ZF, Jenner AM, Melendez AJ, Cheung NS (2011) Up-regulation of endoplasmic reticulum stress-related genes during the early phase of treatment of cultured cortical neurons by the proteasomal inhibitor lactacystin. J Cell Physiol 226:494–510

    Article  CAS  PubMed  Google Scholar 

  • Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe H, Bedard K, Groenendyk J, Jung J, Michalak M (2008) Endoplasmic reticulum stress in the absence of calnexin. Cell Stress and Chaperones 13:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Thompson LJ, Hohfeld T, Patterson C (2001) The co chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    Article  CAS  PubMed  Google Scholar 

  • Converso DP, Taillé C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J (2006) HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J 20(8):1236–1238

    Article  CAS  PubMed  Google Scholar 

  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MP, Gustafsson JA, Sitia R, Spyrou G (2003) ERdj5, an Endoplasmic Reticulum (ER)-resident Protein Containing DnaJ and Thioredoxin Domains, Is Expressed in Secretory Cells or following ER Stress. J Biol Chem 278:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Neupert W (1996) Roles for hsp70 in protein translocation across membranes of organelles. EXS 77:25–40

    CAS  PubMed  Google Scholar 

  • Cyr DM, Höhfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368–375

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo MA, Hetzer MW (2006) The role of the nuclear envelope in cellular organization. Cell Mol Life Sci 63:316–332

    Article  PubMed  CAS  Google Scholar 

  • Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, De Carli L, Riva S, Biamonti G (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13:2069–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA, Blanchette J, Rizzo K, Kohn E (2000) CAIR-1/ BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 19:4385–4395

    Article  CAS  PubMed  Google Scholar 

  • Elliott E, Tsvetkov P, Ginzburg I (2007) BAG-1 associates with Hsc70.Tau complex and regulates the proteasomal degradation of Tau protein. J Biol Chem 51:37276–37284

    Article  CAS  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, llag LL, Jay DG (2004) Functional proteomic screens reveal an essential extracellular role for hsp90aplha in cancer cell invasiveness. Nat Cell Biol 6:507–514

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Maines MD (1991) Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: Heme oxygenase 2 is not a heat shock protein. Proc Natl Acad Sci U S A 88:5364–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339:135–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez J, Yaman I, Merrick WC, Koromilas A, Wek RC, Sood R, Hensold J, Hatzoglou M (2002a) Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M (2002b) Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem 277:19198–19205

    Article  CAS  PubMed  Google Scholar 

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Article  CAS  PubMed  Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Adhikari R, Howarth M, Nakamura K, Gold MC, Hill AB, Knee R, Michalak M, Elliott T (2002) Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16:99–109

    Article  CAS  PubMed  Google Scholar 

  • Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seeliq L, Kim C, Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 151:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genereux JC, Qu S, Zhou M, Ryno LM, Wang S, Shoulders MD, Kaufman RJ, Lasmezas CI, Kelly JW, Wiseman RL (2015) Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 34:4–19

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos CP, Lundquist-Heil A, Yochem J, Feiss M (1980) Identification of the E. coli dnaJ gene product. Mol Gen Genet 178:583–588

    Article  CAS  PubMed  Google Scholar 

  • Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    Article  CAS  PubMed  Google Scholar 

  • Gissel C, Doutheil J, Paschen W (1997) Activation of heme oxygenase-1 expression by disturbance of endoplasmic reticulum calcium homeostasis in rat neuronal cell culture. Neurosci Lett 231:75–78

    Article  CAS  PubMed  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300

    Article  CAS  PubMed  Google Scholar 

  • Grenert JP, Johnson BD, Toft DO (1999) The importance of ATP binding and hydrolysis by Hsp90 in formation and function of protein heterocomplexes. J Biol Chem 274:17525–17533

    Article  CAS  PubMed  Google Scholar 

  • Guérin R, Arseneault G, Dumont S, Rokeach LA (2008) Calnexin Is Involved in Apoptosis Induced by Endoplasmic Reticulum Stress in the Fission Yeast. Mol Biol Cell 19:4404–4420

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8:e1000410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas IG, Wabi M (1983) Immunoglobulin heavy chain binding protein. Nature 306:387–389

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S, Iwasaka H, Shingu C, Matsumoto S, Hasegawa A, Asai N, Noguchi T (2009) Heat shock protein 72 protects insulin-secreting beta cells from lipopolysaccharide-induced endoplasmic reticulum stress. Int J Hyperthermia 25:626–633

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol 24:8007–8017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  CAS  PubMed  Google Scholar 

  • Han W, Christen P (2003a) Interdomain communication in the molecular chaperone DnaK. Biochem J 369:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han W, Christen P (2003b) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000a) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000b) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  • Harris SF, Shiau AK, Agard DA (2004) The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12(6):1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedhli N, Wang L, Wang Q, Rashed E, Tian Y, Sui X, Madura K, Depre C (2008) Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22. Cardiovasc Res 77:497–505

    Article  CAS  PubMed  Google Scholar 

  • Hessenauer A, Schneider CC, Götz C, Montenarh M (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signal 23(1):145–151

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Glimcher L (2008) The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 18:38–44

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312:572–576

    Article  CAS  PubMed  Google Scholar 

  • Hetzer MW, Walther TC, Mattaj IW (2005) Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol 21:347–380

    Article  CAS  PubMed  Google Scholar 

  • Hohfeld J (1998) Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the antiapoptotic protein BAG-1 provides novel insights. Biol Chem 379:269–274

    CAS  PubMed  Google Scholar 

  • Hu MC, Gong HY, Lin GH, Hu SY, Chen MH, Huang SJ, Liao CF, Wu JL (2007) XBP-1, a key regulator of unfolded protein response, activates transcription of IGF1 and Akt phosphorylation in zebrafish embryonic cell line. Biochem Biophys Res Commun 359:778–783

    Article  CAS  PubMed  Google Scholar 

  • Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C (2015) Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61:307–315

    Article  CAS  PubMed  Google Scholar 

  • Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDd54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 227:416–427

    Article  CAS  PubMed  Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Van Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nature genetics 36:597–601

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Iwamoto I, Inaguma Y, Takizawa T, Nagata K, Asano T, Kato K (2005) Endoplasmic reticulum stress induces the phosphorylation of small heat shock protein, Hsp27. J Cell Biochem 95:932–941

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  • Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T (1992) Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A 89:10691–10695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn TR, Radford SE (2005) The yin and yang of protein folding. FEBS J 272:5962–5970

    Article  CAS  PubMed  Google Scholar 

  • Jarosch E, Lenk U, Sommer T (2003) Endoplasmic reticulum-associated protein degradation. Int Rev Cytol 223:39–81

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, McCoy MT, Beauvais G, Ladenheim B, Gilmore K, Wood W, Becker K, Cadet JL (2009) Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One 4:e6092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Höhfeld J, Patterson C (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: Identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    Article  CAS  PubMed  Google Scholar 

  • Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Cavener DR, Wek RC (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24:1365–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Q, Sanbe A, Zhang X, Liu J-P, Minamisawa S (2014) aB-Crystallin R120G variant causes cardiac arrhythmias and alterations in the expression of Ca2+ handling proteins and ER stress in mice. Clin Exp Pharmacol Physiol 41(8):589–599

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Gu Y, Zanusso G, Sy M, Kumar A, Cohen P, Gambetti P, Singh N (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 275:38699–38704

    Article  CAS  PubMed  Google Scholar 

  • Jordan R, McMacken R (1995) Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. J Biol Chem 270:4563–4569

    Article  CAS  PubMed  Google Scholar 

  • Jousse C, Bruhat A, Carraro V, Urano F, Ferrara M, Ron D, Fafournoux P (2001) Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 50UTR. Nucleic Acids Res 29:4341–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, Ron D (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 163:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalbfleisch T, Cambon A, Wattenberg BW (2007) A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8:1687–1694

    Article  CAS  PubMed  Google Scholar 

  • Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  CAS  PubMed  Google Scholar 

  • Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M (2007) Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther 6:299–308

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131:257–270

    Article  CAS  PubMed  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebache S, Cardin E, Nguyen DT, Chevet E, Larose L (2004) Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of translation. J Biol Chem 279:9662–9671

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Hyun HW, Min SJ, Kang TC (2017) Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci 11:47

    PubMed  PubMed Central  Google Scholar 

  • Kojima E, Takeuch A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17:1573–1575

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  • Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J, Dong MQ, Matteson J, Laister R, Arrowsmith C, Yates JR, Balch WE (2010) Biological and Structural Basis for Aha1 Regulation of Hsp90 ATPase Activity in Maintaining Proteostasis in the Human Disease Cystic Fibrosis. Mol Biol Cell 21:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai J, Fukuda J, Kodama H, Murata M, Kawamura K, Itoh H, Tanaka T (2000) Germ cell-specific heat shock protein 105 binds to p53 in a temperature-sensitive manner in rat testis. Eur J Biochem 267:3073–3078

    Article  CAS  PubMed  Google Scholar 

  • Kumano M, Furukawa J, Shiota M, Zardan A, Zhang F, Beraldi E, Wiedmann RM, Fazli L, Zoubeidi A, Gleave ME (2012) Co targeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer. Mol Cancer Ther 11:1661–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurisu J, Honma A, Miyajima H, Kondo S, Okumura M, Imaizumi K (2002) MDG1/ERdj4, an ER-resident DnaJ family member, suppresses cell death induced by ER stress. Genes Cells 8:189–202

    Article  Google Scholar 

  • Lamoureux F, Thomas C, Yin MJ, Fazli L, Zoubeidi A, Gleave ME (2014) Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur Urol 66:145–155

    Article  CAS  PubMed  Google Scholar 

  • Lau PP, Villanueva H, Kobayashi K, Nakamuta M, Chang BH, Chan L (2001) A DnaJ protein, Apobec-1-binding protein-2, modulates apolipoprotein B mRNA editing. J Biol Chem 276:46445–46452

    Article  CAS  PubMed  Google Scholar 

  • Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  CAS  PubMed  Google Scholar 

  • Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  CAS  PubMed  Google Scholar 

  • Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35:373–381

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenna S, Farina AG, Martyanov V, Christmann RB, Wood TA, Farber HW, Scorza HW, Scorza R, Whitfield ML, Lafyatis R, Trojanowska M (2013) Increased expression of endoplasmic reticulum stress genes in patients with limited cutaneous Systemic Sclerosis and Pulmonary Arterial Hypertension. Arthritis Rheum 65:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20(3):326–331

    Article  CAS  Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The Hap90 chaperone machinery- conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  • Liao Q, Ozawa F, Friess H, Zimmermann A, Takayama S, Reed JC, Kleeff J, Büchler MW (2001) The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 503:151–157

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilley BN, Ploegh HL (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A 102:14296–14301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AM, Chao PL, Fang SF, Chi CW, Yang CH (2007) Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain. Toxicol Appl Pharmacol 224:138–146

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Bonifacino JS, Yuan LC, Klausner RD (1988) Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54:209–220

    Article  CAS  PubMed  Google Scholar 

  • Litt M, Kramer P, la Morticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystalline gene CRYAA. Hum Mol Genet 7:471–474

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Schroder M, Kaufman RJ (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881–24885

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li Y, Wu S, Li Y, Hao B, Bona R, Han D, Li Z (2010) Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Staron M, Hong F, Wu BX, Sun S, Morales C, Crosson CE, Tomlinson S, Kim I, Wu D, Li Z (2013) Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. Proc Natl Acad Sci U S A 110:6877–6882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louessard M, Bardou I, Lemarchand E, Thiebaut AM, Parcq J, Leprince J, Terrisse A, Carraro V, Fafournoux P, Bruhat A, Orset C, Vivien D, Ali C, Roussel BD (2017) Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death Differ 24:1518–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüders J, Demand J, Schönfelder S, Frien M, Zimmermann R, Höhfeld J (1998) Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biol Chem 379:1217–1226

    Article  PubMed  Google Scholar 

  • Lüders J, Demand J, Höhfeld J (2006) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    Article  Google Scholar 

  • Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem 278:37375–37385

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanal 28:51–65

    Article  CAS  Google Scholar 

  • Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Maattanen P, Gehring K, Bergeron JJ, Thomas DY (2010) Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 21:500–511

    Article  PubMed  CAS  Google Scholar 

  • Maines MD, Eke BC, Zhao X (1996) Corticosterone promotes increased heme oxygenase-2 protein and transcript expression in the newborn rat brain. Brain Research 722:83–94

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L (2002) Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol 22:8506–8513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins VR, Graner E, Garcia-Abreu J, de Souza SJ, Mercadante AF, Veiga SS, Zanata SM, Neto VM, Brentani RR (1997) Complementary hydropathy identifies a cellular prion protein receptor. Nature Medicine 3:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Le Breton L (2015) Hsp90: breaking the symmetry. Mol Cell 58(1):8–20

    Article  CAS  PubMed  Google Scholar 

  • Matsumori M, Itoh H, Toyoshima I, Komatsuda A, Sawada K, Fukuda J, Tanaka T, Okubo A, Kinouchi H, Mizoi K, Hama T, Suzuki A, Hamada F, Otaka M, Shoji Y, Takada G (2002) Characterization of the 105-kDa molecular chaperone Identification, biochemical properties, and localization. Eur J Biochem:1–10

    Google Scholar 

  • Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. The EMBO Journal 18:1492–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  CAS  PubMed  Google Scholar 

  • Meares GP, Zmijewska AA, Jope RS (2008) HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 20(2):347–358

    Article  CAS  PubMed  Google Scholar 

  • Melnick J, Dul JL, Argon Y (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370:373–375

    Article  CAS  PubMed  Google Scholar 

  • Melnyk A, Rieger H, Zimmerman R (2015) Co-chaperones of the mammalian endoplasmic reticulum. Subcell Biochem 78:179–200

    Google Scholar 

  • Meunier L, Usherwood YK, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13:4456–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Hohfeld J, Ohtsuka K, Hartl FU (1996) Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271:19617–19624

    Article  CAS  PubMed  Google Scholar 

  • Mizukoshi E, Suzuki M, Loupatov A, Uruno T, Hayashi H, Misono T, Kaul SC, Wadhwa R, Imamura T (1999) Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochem J 2:461–466

    Article  Google Scholar 

  • Montesano Gesualdi N, Chirico G, Pirozzi G, Costantino E, Landriscina M, Esposito F (2007) Tumor necrosis factor-associated protein 1 (TRAP- 1) protects cells from oxidative stress and apoptosis. Stress 10:342–350

    Article  CAS  PubMed  Google Scholar 

  • Morales C, Wu S, Yang Y, Hao B, Li Z (2009) Drosophila glycoprotein 93 Is an ortholog of mammalian heat shock protein gp96 (grp94, HSP90b1, HSPC4) and retains disulfide bond independent chaperone function for TLRs and integrins. J Immunol 183:5121–5128

    Article  CAS  PubMed  Google Scholar 

  • Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Sánchez J, Chánez-Cárdenas ME (2014) A review on hemeoxygenase-2 focus on cellular protection and oxygen response. Oxid Med Cell Longev 2014:604981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  CAS  PubMed  Google Scholar 

  • Muresan Z, Arvan P (1997) Thyroglobulin transport along the secretory pathway. Investigation of the role of molecular chaperone, GRP94, in protein export from the endoplasmic reticulum. J Biol Chem 272:26095–26102

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23:5187–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne N, Bolon DN (2007) Dimerization of Hsp90 is required for function. J Biol Chem 282(48):35386–35395

    Google Scholar 

  • Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21(1):23–26

    Article  CAS  Google Scholar 

  • Ni M, Zhang Y, Lee AS (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434:181–188

    Article  CAS  PubMed  Google Scholar 

  • Nillegoda NB, Bukau B (2015) Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ninagawa S, Okada T, Sumitomo Y, Horimoto S, Suqimoto T, Ishikawa T, Takeda S, Yamamoto T, Suzuki T, Kamiya Y, Kato K, Mori L (2015) Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway. J Cell Biol 211:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitoh H, Matsuzawa A, Tobiume K, Saequsa K, Takeda K, Inoue K, Hori S, Kalkizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153:1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniquchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okoturo-Evans O, Dybowska A, Valsami-Jones E, Cupitt J, Gierula M, Boobis AR, Edwards RJ (2013) Elucidation of toxicity pathways in lung epithelial cells induced by silicon dioxide nanoparticles. PLoS One 8:e72363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrovsky O, Ahmed NT, Argon Y (2009) The chaperone activity of GRP94 towards of insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol Biol Cell 20:1855–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med 100:641–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam L, Raghunath A, Perumal E (2017) Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress Chaperones 22:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat shock proteins in stress tolerance; degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Paschen W (2003) Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 34:365–383

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Mengesdorf T, Althausen S, Hotop S (2001) Peroxidative stress selectively down-regulates the neuronal stress response activated under conditions of endoplasmic reticulum dysfunction. J Neurochem 76:1916–1924

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Petrova K, Oyadomari S, Hendershot LM, Ron D (2008) Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3. EMBO J 27:2862–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dilmann WH, Browne WH, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24:266–270

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-Binding Site in the Hsp90 molecular chaperone. Cell 90(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Porter KR (1953) Observations on a submicroscopic basophilic component of cytoplasm. J Exp Med 97:727–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter KR, Palade GE (1957) Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol 3:269–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouyssegur J, Shiu RP, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11:941–947

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K (1993) Cloning of a cDNA for Heat-Shock Protein hsp40, a Human Homolog of Bacterial DnaJ. Biochem Biophys Res Commun 197(1):235–240

    Article  CAS  PubMed  Google Scholar 

  • Otero JH, Lizák B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21(5):472–478

    Article  CAS  Google Scholar 

  • Quraishe S, Asuni A, Boelens WC, O'Connoro V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience 153:483–491

    Article  CAS  PubMed  Google Scholar 

  • Rabu C, Wipf P, Brodsky JL, High S (2008) A Precursor-specific Role for Hsp40/Hsc70 during Tail-anchored Protein Integration at the Endoplasmic Reticulum. J Biol Chem 283:27504–27513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Letters 514:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  • Rao RV, Niazi K, Mollahan P, Mao X, Crippen D, Poksay KS, Chen DE (2006) Bredesen. Coupling endoplasmic reticulum stress to the cell-death program a novel HSP90-independent role for the small chaperone protein p23. Cell Death Differ 13:415–425

    Article  CAS  PubMed  Google Scholar 

  • Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48 (UFD1/NPL4), a ubiquitin -selective chaperone. Cell 107:667–677

    Article  CAS  PubMed  Google Scholar 

  • Rizvi SM, Mancino L, Thammavongsa V, Cantley RL, Raghavan MA (2004) Polypeptide binding conformation of calreticulin is induced by heat shock, calcium depletion, or by deletion of the C-terminal acidic region. Mol Cell 15:913–923

    Article  CAS  PubMed  Google Scholar 

  • Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38(5):253–262

    Article  PubMed  CAS  Google Scholar 

  • Roue G, Perez-Galan P, Mozos A, Lopez-Guerra M, Xargay-Torrent S, Rosich L, Saborit-Villarroya I, Normant E, Campo E, Colomer D (2011) The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood 117(4):1270–1279

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser J, Spiess M (2002) Endoplasmic reticulum storage diseases. Swiss Med Wkly 132:211–222

    CAS  PubMed  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32:469–476

    Article  CAS  PubMed  Google Scholar 

  • Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22:10690–10698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder M (2006) The unfolded protein response. Mol Biotechnol 34:279–290

    Article  CAS  PubMed  Google Scholar 

  • Schroder M, Kaufman RJ (2005a) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005b) The Mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  • Schuberth C, Buchberger A (2005) Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ERassociated protein degradation. Nat Cell Biol 7:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94

    Article  CAS  Google Scholar 

  • Shamu CE, Walter P (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15:3028–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Tsuchiya M, Bartlett JD (2008) Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environ Health Perspect 116:1142–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Hendershot LM (2005) ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded sustrates. Mol Biol Cell 16:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99–111

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Vattem KM, Sood R, An J, Lianq J, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol Biol Cell 18:7499–7509

    Article  CAS  Google Scholar 

  • Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439

    Article  CAS  PubMed  Google Scholar 

  • Shirriff CS, Heikkila JJ (2017) Characterization of cadmium chloride-induced BiP accumulation in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol 191:117–128

    Article  CAS  PubMed  Google Scholar 

  • Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D (2015) Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 290:5926–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Solís EJ, Pandey JP, Zheng X, Jin DX, Gupta PB, Airoldi EM, Pincus D, Denic V (2016) Defining the essential function of yeast Hsf1 reveals a compact transcriptional program for maintaining Eukaryotic Proteostasis. Mol Cell 63(1):60–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S, Lee H, Kam TI, Tai ML, Lee JY, Noh JY, Shim SM, Seo SJ, Kong YY, Nakagawa T, Chung CW, Choi DY, Oubrahim H, Jung YK (2008) E2-25K/Hip-2 regulates caspase-12 in ER stress – mediated A neurotoxicity. J Cell Biol 182:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sörgjerd K, Ghafouri B, Jonsson B-H, Kelly JW, Blond SY, Ammarström P (2006) Retention of misfolded mutant transthyretin by the caperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol 356:469–482

    Article  PubMed  CAS  Google Scholar 

  • Sousa R, Lafer EM (2006) Keep the traffic moving: mechanism of the Hsp70 motor. Traffic 7:1596–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staron M, Yang Y, Liu B, Li J, Shen Y, Zuniga-Pflucker JC, Aguila I (2010) gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood 115:2380–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staron M, Wu S, Feng H, Stojanovic A, Du X, Bona R, Liu B, Li Z (2011) Heat shock protein gp96/grp94 is an essential chaperone for the platelet Ib–IX–V complex. Blood 117:7136–7144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegh AH, Kesari S, Mahoney JE, Jenq HT, Forloney KL, Protopopov A, Louis DN, Chin L, DePinho RA (2008) Bcl2L12- mediated inhibition of effector caspase-3 and caspase- 7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci U S A 105:10703–10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2003) Interaction of human HSPB8 (HSPB8) with other small heat shock proteins. J Biol Chem 279:2394–2402

    Article  PubMed  CAS  Google Scholar 

  • Sundarraj K, Raghunath A, Panneerselvam L, Perumal E (2017) Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicol Appl Pharmacol 317:12–24

    Article  CAS  PubMed  Google Scholar 

  • Synoradzki K, Bieganowski P (2015) Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. Biochimica et Biophysica Acta (BBA) – Mol Cell Res 1853(2):445–452

    Article  CAS  Google Scholar 

  • Taiyab A, Sreedhar AS, Rao CM (2009) Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 78:142–152

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. The EMBO J 16:4887–4896

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  CAS  PubMed  Google Scholar 

  • Tannous A, Pisoni GB, Hebert DN, Molinari M (2015) N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 41:79–89

    Article  CAS  PubMed  Google Scholar 

  • Tarantini F, LaVallee T, Jackson A, Gamble S, Carreira CM, Garfinkel S, Burgess WH, Maciag T (1998) The extravesicular domain of synaptotagmin-1 is released with the latent fibroblast growth factor-1 homodimer in response to heat shock. J Biol Chem 273:22209–22216

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38:433–444

    Article  CAS  PubMed  Google Scholar 

  • Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS (1994) Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. PNAS 91:7510–7514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibault G, Ng DT (2012) The endoplasmic reticulum associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 4:a013193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thuerauf DJ, Morrison L, Glembotski CC (2004) Opposing roles for ATF6α and ATF6β in endoplasmic reticulum stress response gene induction. J Biol Chem 279:21078–21084

    Article  CAS  PubMed  Google Scholar 

  • Tirasophon W, Lee K, Callaghan B, Welihinda A, Kaufman RJ (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 14:2725–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL (2006) Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 281:5852–5860

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255

    Article  CAS  PubMed  Google Scholar 

  • Tschopp J, Martinon F, Hofmann K (1999) Apoptosis: silencing the death receptors. Curr Biol 9:R381–R384

    Article  CAS  PubMed  Google Scholar 

  • Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, Joice G, Bertsch PM (2012) Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol 46:4115–4124

    Article  CAS  PubMed  Google Scholar 

  • Tyler RE, Pearce MMP, Shaler TA, Olzmann JA, Greenblatt EJ, Kopito RR (2012) Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol Biol Cell 23:4668–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (1996) Stress induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 16:1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubeda M, Vallejo M, Habener JF (1999) CHOP enhancement of gene transcription by interactions with Jun/Fos AP- 1 complex proteins. Mol Cell Biol 19:7589–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano F, Wang X (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, Kabashi E, Drapeau P, Parker JA (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75

    Article  CAS  PubMed  Google Scholar 

  • Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veratti E (1961) Investigations on the fine structure of striated muscle fiber read before the Reale Istituto Lombardo. 13 March 1902. J Biophys Biochem Cytol 10:1–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99

    Google Scholar 

  • Wall D, Zylicz M, Georgopoulos C (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 269:5446–5451

    CAS  PubMed  Google Scholar 

  • Wang HG, Takayama S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci U S A 93:7063–7068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CW, Kim J, Huang WP, Abeliovich H, Stromhaug PE, Dunn WA Jr, Klionsky DJ (2001) Apg2 Is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276:30442–30451

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Unger G, Ahmad KA, Slaton JW, Ahmed K (2005) Downregulation of CK2 induces apoptosis in cancer cells a potential approach to cancer therapy. Mol Cell Biochem 274:77–84

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wey S, Zhang Y, Ye R, Lee AS (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11:2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42:758–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watterson TL, Hamilton B, Martin R, Coulombe RA (2009) Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicol Sci 112:111–122

    Article  CAS  PubMed  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J, Hohfeld J, Cheetham ME (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Wolmarans A, Lee B, Spyracopoulos L, LaPointe P (2016) The Mechanism of Hsp90 ATPase Stimulation by Aha1. Scientific Reports 6:33179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Tiong CX, Bian JS (2012) Hydrogen sulfide protects SH-SY5Y cells against 6-hydroxydopamine-induced endoplasmic reticulum stress. Am J Physiol Cell Physiol 303:C81–C91

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Zheng C, Zhi-qi C, Liu R, Li G, Hu W, Pei H, Li B (2012) Expression of Endoplasmic Reticulum Stress-Related Factors in the Retinas of Diabetic Rats. Exp Diabetes Res 2012:743780

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Haslam RH, Haslam DB (2000) HEDJ, an Hsp40 co-chaperone localized to the endoplasmic reticulum of human cells. J Biol Chem 272:24984–24992

    Article  Google Scholar 

  • Zhang D, Putti TC (2010) Over-expression of ERp29 attenuates doxorubicin-induced cell apoptosis through up-regulation of Hsp27 in breast cancer cells. Exp Cell Res 316:3522–3531

    Article  CAS  PubMed  Google Scholar 

  • Zhang LH, Zhang X (2010) Roles of GRP78 in physiology and cancer. J Cell Biochem 110:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wu BX, Metelli A, Thaxton JE, Hong F, Rachidi S, Ansa-Addo E, Sun S, Vasu C, Yang Y, Liu B, Li Z (2015) GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest 125:859–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Xu F, Liang H, Cao H, Cai M, Xu W, Weng J (2017) SIRT1/HSF1/HSP pathway is essential for exenatide-alleviated, lipid-induced hepatic endoplasmic reticulum stress. Hepatology 66:809–824

    Article  CAS  PubMed  Google Scholar 

  • Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Azhwar Raghunath is the recipient of a University Grants Commission - Basic Scientific Research Senior Research Fellowship (UGC-BSR-SRF - No.F.7-25/2007) funded by UGC-BSR, New Delhi, India. We thank the Department of Science and Technology, Science and Engineering Board, New Delhi, for financial assistance (No.: SB/EMEQ-246/2014 and EMR/2014/000600). This work was also supported by the University Grants Commission – Special Assistance Programme (UGC-SAP-II:F-3-20/2013) and Department of Science and Technology, Fund for Improvement of Science and Technology infrastructure in universities and higher educational institutions (DST-FIST:SR/FST/LSI-618/2014), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Perumal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghunath, A., Panneerselvam, L., Sundarraj, K., Perumal, E. (2018). Heat Shock Proteins and Endoplasmic Reticulum Stress. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_3

Download citation

Publish with us

Policies and ethics