Skip to main content

Copper Nanostructures Applications in Plant Protection

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Plant pathologists throughout the globe are working closely to develop a powerful solution for food and agricultural commodities protection from diverse pathogens. Nanobiotechnology hasĀ greatĀ potential in agriculture especially in plant health has been reported. Management of most beneficial micronutrient and pesticides for sustainable crop production is a priority-based area of research in agriculture. Copper nanoparticles are one among the critical nanosubstances because of their diverse characteristics and applications. The present chapter summarizes the modern-day knowledge and the future prospects in the applications of copper nanomaterials in plant pathology studies. Applications involve nanosensors, antibacterial agent, antifungal agent, plant growth promotion, and plant protection. The beneficial and deleterious effects of Cu nanoparticles through enhanced root and shoot length and fruit and crop yield and substantial increase in vegetative biomass of seedlings in different plant species were also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Vasilā€™kov AY, Said-Galiev EE, Rubina MS, Khokhlov AR, Naumkin AV, Shtykova EV, Alghuthaymi MA (2018) Bimetallic and chitosan nanocomposites hybrid with trichoderma: novel antifungal agent against cotton soilā€“borne fungi. Eur J Plant Pathol 151:57ā€“72. https://doi.org/10.1007/s10658-017-1349-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108ā€“117

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815ā€“823

    CASĀ  Google ScholarĀ 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:102ā€“118

    Google ScholarĀ 

  • Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nano Mater 2014:1ā€“4. https://doi.org/10.1155/2014/637858

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Anderson A, McLean J, McManus P, Britt D (2017) Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int J Nanotechnol 14(1ā€“6):15ā€“21

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819ā€“1827

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Banik S, PĆ©rez-de-Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish J Agric Res 15(2):1005. https://doi.org/10.5424/sjar/2017152-10305

    ArticleĀ  Google ScholarĀ 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433ā€“441

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75ā€“78

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355ā€“363

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163ā€“2175

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Borkow G, Gabbay J (2009) Copper, an ancient remedt returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272ā€“278

    CASĀ  Google ScholarĀ 

  • Bouson S, Krittayavathananon A, Phattharasupakun N, Siwayaprahm P, Sawangphruk M (2017) Antifungal activity of waterā€“stable copperā€“containing metalā€“organic frameworks. R Soc Open Sci 4:170654 https://doi.org/10.1098/rsos.170654

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229ā€“235

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brunel F, ElGueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92:1348ā€“1356

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • CĆ”rdenaz G, DĆ­az JV, MelĆ©ndrez MF, Cruzat CC, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511ā€“524

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24ā€“29

    Google ScholarĀ 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP,Ā Aich P, Chakraborty R,Ā Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against. Nanotechnology 23 (8):085103

    Google ScholarĀ 

  • Chen S, Sommers JM (2001) Alkanethiolateā€“protected copper nanoparticles: spectroscopy, electrochemistry, and solidā€“state morphological evolution. J Phys Chem B 105:816ā€“8820

    Google ScholarĀ 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Pal A, Raliya R, Biswas P, Saharan V (2017a) Synthesis, characterization, and application of chitosan nanomaterials loaded with zinc and copper for plant growth and protection. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd, Singapore, pp 227ā€“248

    ChapterĀ  Google ScholarĀ 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017b) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cioffi N, Rai M (2012) Nano-antimicrobials: progress and prospects. Springer-Verlag, Berlin, Heidelberg

    BookĀ  Google ScholarĀ 

  • Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymerā€“based copper nanocomposite coatings. Appl Phys Lett 85(12):2417ā€“2419

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255ā€“5262

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110ā€“119

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dang V P, Vo TKL, Nguyen TKL, Nguyen ND, Nguyen DC, Bui DD, Bui DC, Nguyen QH (2010) Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by -irradiation. J Exp Nanosci 5(2):169ā€“179

    Google ScholarĀ 

  • Dimkpa CO, McLean GE, Britt DW, Anderson AJĀ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Bio Metals 26(6):913ā€“924

    Google ScholarĀ 

  • Dimkpa C, Bindraban P, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385ā€“389

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eastman JA, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycolā€“based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718ā€“720

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Elmer W, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3:1072ā€“1079

    ArticleĀ  CASĀ  Google ScholarĀ 

  • El-Sayed NR (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVPā€“palladium nanoparticles. J Am Chem Soc 125:8340ā€“8347

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromn C, Moya JS (2009) Antibacterial and antifungal activity of a sodaā€“lime glass containing copper nanoparticles. Nanotechnology 20(50):505701

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055ā€“1058

    Google ScholarĀ 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    ArticleĀ  Google ScholarĀ 

  • Garcıa VN, Gonzalez A, Fuentes M, Aviles M, Rios MY, Zepeda G, Rojas MG (2003) Antifungal activities of nine traditional Mexican medicinal plants. Jethnopharmacol 87(1):85ā€“88.

    Google ScholarĀ 

  • Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agroā€“food sector. CiĆŖnc Tecnol Aliment 30:573ā€“581

    ArticleĀ  Google ScholarĀ 

  • Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Med 22:322ā€“328

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nanoā€“biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792ā€“803

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743ā€“21752

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Giannousi K, Pantazaki A, Dendrinou-Samara C (2017) Copper based nanoparticles as antimicrobials. In: Ficai A, Grumezescu AM (eds) Nanostructures for antimicrobial therapy. Elsevier, Amsterdam, pp 515ā€“527

    ChapterĀ  Google ScholarĀ 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781ā€“9792

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Guerrero SIC, Brito EMS, Castillo HAP, Rivero SHT, Caretta CA, Velasco AL, Duran R, Borunda EO (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gunawan C, Teoh WY, Marquis CP,Ā Amal R(2011) Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano 5 (9):7214ā€“7225

    Google ScholarĀ 

  • Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1:6ā€“11

    Google ScholarĀ 

  • HernĆ”ndez-HernĆ”ndez H, GonzĆ”lez-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, JuĆ”rez-Maldonado A (2018) Effects of chitosanā€“PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hirsh S, Schiefer J, Gschwandtner A, Hartmann M (2014) The determinants of firm profitability differences in EU food processing. J Agric Econ 65:703ā€“721

    ArticleĀ  Google ScholarĀ 

  • Honary H, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7(3):999ā€“1005

    Google ScholarĀ 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563:904ā€“911

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hooley G, Piercy NF, Nicoulaud B (2014) Marketing strategy and competitive positioning. Prentice Hall/Financial Times, London (ISBN 9780273740933)

    Google ScholarĀ 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copperā€“based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001ā€“1009

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by inkā€“jet printing. Adv Funct Mater 18(5):679ā€“686

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Juarez-Maldonado A, Ortega-Ortiz H, Perez-Labrada F, Cadenas-Pliego G, Benavides-Mendoza A (2016) Cu nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. J Appl Bot Food Qual 89:183ā€“189

    CASĀ  Google ScholarĀ 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224ā€“235

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13ā€“17

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726ā€“1732

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13(1):678ā€“685

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233ā€“240

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775ā€“785

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kim MH, Lim B, Lee EP, Xia Y (2008) Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology. J Mater Chem 18:4069ā€“4073

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY (2014) Phytotoxicity of colloidal solutions of metalā€“containing nanoparticles. Cytol Genet 48:99ā€“102

    ArticleĀ  Google ScholarĀ 

  • Kumar CSSR (2009) Metallic nanomaterials. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google ScholarĀ 

  • Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227:448. https://doi.org/10.1007/s11270ā€“016ā€“3156ā€“9

    ArticleĀ  Google ScholarĀ 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum) plant agar test for waterā€“insoluble nanoparticles. Environ Toxicol Chem 27:1915ā€“1921

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668. https://doi.org/10.1007/S11270-013-1668-0

    ArticleĀ  Google ScholarĀ 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B(2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661ā€“670

    Google ScholarĀ 

  • Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7:38853ā€“38860

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131ā€“139

    Google ScholarĀ 

  • Liu J, Dhungana B,Ā Cobb GP (2018) Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environ Toxicol Chem 37 (1):11ā€“20

    Google ScholarĀ 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48ā€“54

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mohan R, Shanmugharaj AM, Hun RS (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119ā€“126

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889ā€“893

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Montag J, Schreiber L, Schƶnherr J (2006) An in vitro study on the postinfection activities of copper hydroxide and copper sulfate against conidia of Venturia inaequalis. J Agric Food Chem 54(3):893ā€“899

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302ā€“313

    Google ScholarĀ 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5):372ā€“386

    Google ScholarĀ 

  • Nelson SC (2008) Late blight of tomato (Phytophthora infestans). Honolulu (HI): University of Hawaii. 10 p. (Plant Disease; PDā€“45).

    Google ScholarĀ 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618. https://doi.org/10.1038/srep11618

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986ā€“28006

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silicaā€“silver for control of various plant diseases. Plant Pathol J 22:295ā€“302

    ArticleĀ  Google ScholarĀ 

  • Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and life sciences. Nanomedicine 1:51ā€“65

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • PĆ©rez-de-Luque A, HermosĆ­n MC (2013) Nanotechnology and its use in agriculture. Wiley-Blackwell, Chichester, pp 299ā€“405

    Google ScholarĀ 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374ā€“382

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesized copper nanoparticles evaluated against red rootā€“rot disease in tea plants. J Exp Nanosci 11(13):1019ā€“1031

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem 63:2606ā€“2617

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:1ā€“8 https://doi.org/10.1155/2014/963961

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705ā€“713

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 253ā€“269

    ChapterĀ  Google ScholarĀ 

  • Rafique R, Arshad M, Khokhar MF, Qazi IA, Hamza A, Virk N (2014) Growth response of wheat to titania nanoparticles application. NUST J Eng Sci 7:42ā€“46

    Google ScholarĀ 

  • Rai M, Kratosova G (2015) Management of phytopathogens by application of green nanobiotechnology: emerging trends and challenges. J Agric Sci 66:15ā€“22

    Google ScholarĀ 

  • Rajasekaran P, Santra S (2015) Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrientā€“based antimicrobial feed additive. Front Vet Sci 2:62

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114ā€“116

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copperā€“oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56ā€“61

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rubina RS, Vasilā€™kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam KA (2017) Synthesis and characterization of chitosanā€“copper nanocomposites and their fungicidal activity against two sclerotiaā€“forming plant pathogenic fungi. J Nanostruct Chem 7:249ā€“258. https://doi.org/10.1007/s40097ā€“017ā€“0235ā€“4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677ā€“683

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cuā€“chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346ā€“353

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148ā€“6155

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27 (17):3514ā€“3518

    Google ScholarĀ 

  • Salzemann C, Lisiecki I, Urban J,Ā Pileni MP (2004). Anisotropic copper nanocrystals synthesized in a supersaturated medium: Nanocrystal growth. Langmuir 20(26): 11772ā€“11777.

    Google ScholarĀ 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017a) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33ā€“58

    ChapterĀ  Google ScholarĀ 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73ā€“97

    ChapterĀ  Google ScholarĀ 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321ā€“330

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22ā€“44

    Google ScholarĀ 

  • Sekhon BB (2014) Nanotechnology in agri-food production: an overview. Nanotechnology, Nanotechnol Sci Appl. 7:31ā€“53

    Google ScholarĀ 

  • Servin A, Elmer W, Mukherjee A, Torre-Roche RD, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92 https://doi.org/10.1007/s11051-015-2907-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L) seedlings. Chemosphere 93:906ā€“915

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L). Environ Exp Bot 102:37ā€“47

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865ā€“873

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Poll 159 (5):1277ā€“1282

    Google ScholarĀ 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinacia oleracea grown in soil media. Bull Environ Contam Toxicol 97(4):548ā€“553

    Google ScholarĀ 

  • Sodano V, Verneau F (2014) Competition policy and food sector in the European Union. J Int Food Agribusiness Mark 26:155ā€“172

    ArticleĀ  Google ScholarĀ 

  • Somers E (1959) The preparation of bordeaux mixture. J Sci Food Agric 10 (1):68ā€“72

    Google ScholarĀ 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8ā€“18.

    Google ScholarĀ 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3. https://doi.org/10.1186/s40529-016-0118-x

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473ā€“9479.

    Google ScholarĀ 

  • Subramanian B, Anu Priya K, Thanka Rajan S, Dhandapani P, Jayachandran M (2014) Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics. Mater Lett 128:1ā€“4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463ā€“474

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Theivasanthi T, Alagar M (2011) Studies of copper nanoparticles effects on micro-organisms. arXiv preprint arXiv:1110: 1372.

    Google ScholarĀ 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L) seedlings. Plant Physiol Biochem 96:189ā€“198

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. TrendsĀ Microbiol 22 (6):326ā€“333

    Google ScholarĀ 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)ā€“induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167ā€“177

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:1ā€“7 https://doi.org/10.1155/2016/1957612

    Google ScholarĀ 

  • Wang WC, Freemark K (1995) The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicol Environ Safe 30 (3):289ā€“301

    Google ScholarĀ 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 46:4434ā€“4441

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699ā€“712

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B (2016b) CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50:6008ā€“6016

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016c) The Gene Is Required for Apothecial Development . Phytopathology 106 (5):484ā€“490

    Google ScholarĀ 

  • Wani IA, Ahmad T (2013) Size and shape dependent antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B 101:162ā€“170

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wei TY, Huang CT, Hansen BJ, Lin YF, Chen L J, Lu SY, Wang ZL (2010) Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl Physics Lett 96(1):013508.

    Google ScholarĀ 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in antimicrobial materials and their characterization. Analyst 133:835ā€“845

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Whitesides GM (2003) The ā€œrightā€ size in nanobiotechnology. Nat Biotechnol 21:1161ā€“1165

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L(2015) Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Int J Environ ReseĀ Public Health 12 (12):15100ā€“15109

    Google ScholarĀ 

  • Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta 1865:28ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Young M, Santra S (2014) Copper (Cu)ā€“Silica nanocomposite containing valence-engineered Cu: a new strategy for improving the antimicrobial efficacy of Cu biocides. J Agric Food Chem 62:6043ā€“6052

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Youssef K, Hashim AF, Rubina RS, Alghuthaymi MA, Abd-Elsalam KA (2017) Fungicidal efficacy of chemicallyā€“produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp Agric Sci 100:69ā€“78

    Google ScholarĀ 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145ā€“156

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24(6):1305ā€“1314

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhao L, Huang Y, Keller AA (2017) Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b01306

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17(10):1783ā€“1793

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgment

This research was supported by the Science and Technology Development Fund (STDF), Joint Egypt (STDF)ā€“South Africa (NRF) Scientific Cooperation, Grant ID. 27837 to Kamel Abd-Elsalam.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabal, E., Ramadan, M.M., Amal-Asran, Alghuthaymi, M.A., Abd-Elsalam, K.A. (2018). Copper Nanostructures Applications in Plant Protection. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_3

Download citation

Publish with us

Policies and ethics