Skip to main content

Simplification of CTL Formulae for Efficient Model Checking of Petri Nets

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10877))

Abstract

We study techniques to overcome the state space explosion problem in CTL model checking of Petri nets. Classical state space pruning approaches like partial order reductions and structural reductions become less efficient with the growing size of the CTL formula. The reason is that the more places and transitions are used as atomic propositions in a given formula, the more of the behaviour (interleaving) becomes relevant for the validity of the formula. We suggest several methods to reduce the size of CTL formulae, while preserving their validity. By these methods, we significantly increase the benefits of structural and partial order reductions, as the combination of our techniques can achive up to 60% average reduction in formulae sizes. The algorithms are implemented in the open-source verification tool TAPAAL and we document the efficiency of our approach on a large benchmark of Petri net models and queries from the Model Checking Contest 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the current development snapshots of LoLA (based on version 2.0) and Sara (based on version 1.14), kindly provided by the LoLA and Sara development team.

References

  1. Avrunin, G.S., Buy, U.A., Corbett, J.C.: Integer programming in the analysis of concurrent systems. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 92–102. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55179-4_10

    Chapter  Google Scholar 

  2. Avrunin, G.S., Buy, U.A., Corbett, J.C., Dillon, L.K., Wileden, J.C.: Automated analysis of concurrent systems with the constrained expression toolset. IEEE Trans. Softw. Eng. 17(11), 1204–1222 (1991)

    Article  Google Scholar 

  3. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: open source (mixed-integer) linear programming system. Eindhoven University of Technology (2004)

    Google Scholar 

  4. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability problem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_28

    Chapter  Google Scholar 

  5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0025774

    Chapter  Google Scholar 

  6. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and debugging. Commun. ACM 52(11), 74–84 (2009)

    Article  Google Scholar 

  7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

    Article  Google Scholar 

  8. Corbett, J.C., Avrunin, G.S.: Using integer programming to verify general safety and liveness properties. Formal Methods Syst. Des. 6(1), 97–123 (1995)

    Article  Google Scholar 

  9. Dalsgaard, A.E., Enevoldsen, S., Fogh, P., Jensen, L.S., Jepsen, T.S., Kaufmann, I., Larsen, K.G., Nielsen, S.M., Olesen, M.C., Pastva, S., Srba, J.: Extended dependency graphs and efficient distributed fixed-point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57861-3_10

    Chapter  Google Scholar 

  10. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36

    Chapter  MATH  Google Scholar 

  11. Esparza, J., Melzer, S.: Verification of safety properties using integer programming: beyond the state equation. Formal Methods Syst. Des. 16(2), 159–189 (2000)

    Article  Google Scholar 

  12. Geffroy, T., Leroux, J., Sutre, G.: Occam’s Razor applied to the Petri net coverability problem. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 77–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45994-3_6

    Chapter  Google Scholar 

  13. Hack, M.H.T.: Analysis of production schemata by Petri nets. Technical report, DTIC Document (1972)

    Google Scholar 

  14. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_16

    Chapter  Google Scholar 

  15. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Berthomieu, B., Ciardo, G., Colange, M., Dal Zilio, S., Amparore, E., Beccuti, M., Liebke, T., Meijer, J., Miner, A., Rohr, C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: Complete Results for the 2017 Edition of the Model Checking Contest, June 2017. http://mcc.lip6.fr/2017/results.php

  16. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods for state properties. Formal Methods Syst. Des. 29(3), 215–251 (2006)

    Article  Google Scholar 

  17. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  18. Murata, T., Koh, J.Y.: Reduction and expansion of live and safe marked graphs. IEEE Trans. Circ. Syst. 27(1), 68–70 (1980)

    Article  MathSciNet  Google Scholar 

  19. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Optimization. Wiley, Chichester (1992). Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.S.: Constraint classification for mixed integer programming formulations. COAL Bull. 20, 8–12 (1988)

    MATH  Google Scholar 

  20. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48745-X_4

    Chapter  Google Scholar 

  21. Schmidt, K.: Integrating low level symmetries into reachability analysis. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 315–330. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_22

    Chapter  Google Scholar 

  22. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fundamenta Informaticae 47(3–4), 325–335 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1_36

    Chapter  Google Scholar 

  24. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency XII. LNCS, vol. 10470, pp. 140–165. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55862-1_7

    Chapter  Google Scholar 

  25. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_19

    Chapter  MATH  Google Scholar 

  26. Wolf, K.: Running LoLA 2.0 in a model checking competition. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 274–285. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_13

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Karsten Wolf and Torsten Liebke from Rostock University for providing us with the development snapshot of the latest version of LoLA and for their help with setting up the tool and answering our questions. The last author is partially affiliated with FI MU, Brno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Srba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J. (2018). Simplification of CTL Formulae for Efficient Model Checking of Petri Nets. In: Khomenko, V., Roux, O. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2018. Lecture Notes in Computer Science(), vol 10877. Springer, Cham. https://doi.org/10.1007/978-3-319-91268-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91268-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91267-7

  • Online ISBN: 978-3-319-91268-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics