Skip to main content

Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

This paper presents two modifications of the method of synthesis and optimization of rule bases (RB) of fuzzy systems (FS) for decision making and control of complex technical objects under conditions of uncertainty. To illustrate the advantages of the proposed method, the development of the RB of Mamdani type fuzzy controller (FC) for the automatic control system (ACS) of the reactor temperature of the experimental specialized pyrolysis plant (SPP) is carried out. The efficiency of the presented method of synthesis and optimization of the FS RB is investigated and its comparison with the other existing methods is carried out on the basis of this FC. Analysis of simulation results confirms the high efficiency of the proposed by the authors method of synthesis and reduction of the FS RB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta, B.R., Reddy, Y.J.: Chapter 7 - SCADA systems. In: Industrial Process Automation Systems, pp. 237–300 (2015)

    Chapter  Google Scholar 

  2. Kondratenko, Y.P., Kozlov, O.V., Korobko, O.V., Topalov, A.M.: Internet of things approach for automation of the complex industrial systems. In: Ermolayev, V. et al. (eds.) Proceedings of the 13th International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications. Integration, Harmonization and Knowledge Transfer, ICTERI 2017, CEUR-WS, Kyiv, Ukraine, vol. 1844, pp. 3–18 (2017)

    Google Scholar 

  3. Xiao, Z., Guo, J., Zeng, H., Zhou, P., Wang, S.: Application of fuzzy neural network controller in hydropower generator unit. J. Kybern. 38(10), 1709–1717 (2009). https://doi.org/10.1108/03684920910994079

    Article  MATH  Google Scholar 

  4. Hayajneh, M.T., Radaideh, S.M., Smadi, I.A.: Fuzzy logic controller for overhead cranes. Eng. Comput. 23(1), 84–98 (2006). https://doi.org/10.1108/02644400610638989

    Article  MATH  Google Scholar 

  5. Topalov, A., Kozlov, O., Kondratenko, Y.: Control processes of floating docks based on SCADA systems with wireless data transmission. In: Perspective Technologies and Methods in MEMS Design: Proceedings of the International Conference MEMSTECH 2016, Lviv-Poljana, Ukraine, pp. 57–61 (2016). https://doi.org/10.1109/memstech.2016.7507520

  6. Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.): Recent Developments and New Directions in Soft Computing. SFSC, vol. 317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06323-2

    Book  MATH  Google Scholar 

  7. Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.): Advance Trends in Soft Computing. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03674-8

    Book  Google Scholar 

  8. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  10. Zadeh, L.A.: The role of fuzzy logic in modeling, identification and control. Model. Identif. Control 15(3), 191–203 (1994)

    Article  MathSciNet  Google Scholar 

  11. Piegat, A.: Fuzzy Modeling and Control, vol. 69. Physica-Verlag, Heidelberg (2013). https://doi.org/10.1007/978-3-7908-1824-6

    Book  MATH  Google Scholar 

  12. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  13. Hampel, R., Wagenknecht, M., Chaker, N. (eds.): Fuzzy Control: Theory and Practice, p. 410. Physica-Verlag, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1841-3

    Book  Google Scholar 

  14. Merigo, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)

    Article  Google Scholar 

  15. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy control. Springer Science & Business Media, Berlin (2013). https://doi.org/10.1007/978-3-662-03284-8

    Book  MATH  Google Scholar 

  16. Suna, Q., Li, R., Zhang, P.: Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model. J. Fuzzy Sets Syst. 133, 1–17 (2003)

    Article  MathSciNet  Google Scholar 

  17. Oh, S.K., Pedrycz, W.: The design of hybrid fuzzy controllers based on genetic algorithms and estimation techniques. J. Kybern. 31(6), 909–917 (2002)

    Article  Google Scholar 

  18. Lodwick, W.A., Kacprzhyk, J. (eds.): Fuzzy Optimization. STUDFUZ, vol. 254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13935-2

    Book  MATH  Google Scholar 

  19. Kondratenko, Y.P., Al Zubi, E.Y.M.: The optimization approach for increasing efficiency of digital fuzzy controllers. In: Annals of DAAAM for 2009 and Proceeding of the 20th International DAAAM Symposium on Intelligent Manufacturing and Automation, pp. 1589–1591 (2009)

    Google Scholar 

  20. Kondratenko, Y., Simon, D.: Structural and parametric optimization of fuzzy control and decision making systems. In: Zadeh, L., Yager, R.R., Shahbazova, S.N., Reformat, M.Z., Kreinovich, V. (eds.) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. STUDFUZZ, vol. 361. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-75408-6

    Chapter  Google Scholar 

  21. Rotshtein, A.P., Rakytyanska, H.B.: Fuzzy evidence in identification, forecasting and diagnosis, vol. 275. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25786-5

    Book  MATH  Google Scholar 

  22. Simon, D.: H∞ estimation for fuzzy membership function optimization. Int. J. Approx. Reason. 40, 224–242 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kondratenko, Y., Korobko, V., Korobko, O., Kondratenko, G., Kozlov, O.: Green-IT approach to design and optimization of thermoacoustic waste heat utilization plant based on soft computing. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Components, Networks and Systems Implementation. SSDC, vol. 105, pp. 287–311. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55595-9_14

    Chapter  Google Scholar 

  24. Simon, D.: Design and rule base reduction of a fuzzy filter for the estimation of motor currents. Int. J. Approx. Reason. 25, 145–167 (2000)

    Article  Google Scholar 

  25. Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Attribute and size reduction mechanisms in multi-adjoint concept lattices. J. Comput. Appl. Math. 318, 388–402 (2017). https://doi.org/10.1016/j.cam.2016.07.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M.: On reductants in the framework of multi-adjoint logic programming. Fuzzy Sets Syst. 317, 27–43 (2017)

    Article  MathSciNet  Google Scholar 

  27. Koczy, L.T., Hirota, K.: Size reduction by interpolation in fuzzy rule bases. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 27(1), 14–25 (1997)

    Article  Google Scholar 

  28. Alcalá, R., Alcalá-Fdez, J., Gacto, M.J., Herrera, F.: Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation. Soft. Comput. 11(5), 401–419 (2007). https://doi.org/10.1007/s00500-006-0106-2

    Article  MATH  Google Scholar 

  29. Pedrycz, W., Li, K., Reformat, M.: Evolutionary reduction of fuzzy rule-based models. In: Tamir, D.E., Rishe, N.D., Kandel, A. (eds.) Fifty Years of Fuzzy Logic and its Applications. SFSC, vol. 326, pp. 459–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19683-1_23

    Chapter  Google Scholar 

  30. Simon, D.: Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  31. Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst. 141(1), 59–88 (2004). https://doi.org/10.1016/S0165-0114(03)00114-3

    Article  MATH  Google Scholar 

  32. Von Altrock, C.: Applying fuzzy logic to business and finance. Optimus 2, 38–39 (2002)

    Google Scholar 

  33. Von Altrock, C.: Fuzzy Logic and Neurofuzzy Applications in Business and Finance. Prentice Hall, NJ (1996)

    Google Scholar 

  34. Kondratenko, Y.P., Kozlov, O.V., Gerasin, O.S., Topalov, A.M., Korobko, O.V.: Automation of control processes in specialized pyrolysis complexes based on web SCADA systems. In: Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, vol. 1, pp. 107–112 (2017). https://doi.org/10.1109/idaacs.2017.8095059

  35. Kondratenko, Y.P., Kozlov, O.V.: Mathematic modeling of reactor’s temperature mode of multiloop pyrolysis plant. In: Engemann, K.J., Gil-Lafuente, A.M., Merigó, J.M. (eds.) MS 2012. LNBIP, vol. 115, pp. 178–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30433-0_18

    Chapter  Google Scholar 

Download references

Acknowledgment

Prof. Dr.Sc. Yuriy P. Kondratenko thanks the Fulbright Scholar Program for the possibility to conduct research in USA, Cleveland State University, 2015–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy P. Kondratenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondratenko, Y.P., Kozlov, O.V., Korobko, O.V. (2018). Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics