Skip to main content

3DFacilities: Annotated 3D Reconstructions of Building Facilities

  • Conference paper
  • First Online:
Advanced Computing Strategies for Engineering (EG-ICE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10863))

Abstract

Scan-to-BIM is the process of converting 3D reconstructions into building information models (BIM). Currently, it involves manual tracing of point clouds by human users in BIM authoring tools, with some automation functionality available for walls, floors, windows, doors, and piping. Emerging semantic segmentation methods demonstrate a level of versatility that could extend the capabilities of automated Scan-to-BIM well past the limited existing object categories. The accuracy of supervised deep learning methods in the context of 3D scene segmentation has experienced rapid improvement over the past year due to the recent availability of large, annotated datasets of indoor spaces. Unfortunately, the semantic object categories in the available datasets do not cover many essential BIM object categories, such as heating, ventilation and air-conditioning (HVAC), and plumbing systems. In an effort to leverage the success of deep learning for Scan-to-BIM, we present 3DFacilities, an annotated dataset of 3D reconstructions of building facilities. The dataset contains over 11,000 individual RGB-D frames comprising 50 scene reconstructions annotated with 3D camera poses and per-vertex and per-pixel annotations. Our dataset is available at https://thomasczerniawski.com/3dfacilities/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Model Uses List, http://bimexcellence.com/model-uses/, last accessed 2018/01/15.

  2. 2.

    Large Scale Visual Recognition Challenge 2012: All results, http://www.image-net.org/challenges/LSVRC/2012/results.html, last accessed 2018/01/15.

  3. 3.

    Structure sensor home page, https://structure.io/, last accessed 2018/01/15.

References

  1. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd edn. Wiley, Hoboken (2011)

    Google Scholar 

  2. Tang, P., Huber, D., Akinci, B., Lipman, R., Lytle, A.: Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques. Autom. Constr. 19(7), 829–843 (2010). https://doi.org/10.1016/j.autcon.2010.06.007

    Article  Google Scholar 

  3. Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. Autom. Constr. 31, 325–337 (2013). https://doi.org/10.1016/j.autcon.2012.10.006

    Article  Google Scholar 

  4. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings — literature review and future needs. Autom. Constr. 38, 109–127 (2014). https://doi.org/10.1016/j.autcon.2013.10.023

    Article  Google Scholar 

  5. Pătrăucean, V., Armeni, I., Nahangi, M., Yeung, J., Brilakis, I., Haas, C.: State of research in automatic as-built modelling. Adv. Eng. Inf. 29(2), 162–171 (2015). https://doi.org/10.1016/j.aei.2015.01.001

    Article  Google Scholar 

  6. Fathi, H., Dai, F., Lourakis, M.: Automated as-built 3D reconstruction of civil infrastructure using computer vision: achievements, opportunities, and challenges. Adv. Eng. Inform. 29(2), 149–161 (2015). https://doi.org/10.1016/j.aei.2015.01.012

    Article  Google Scholar 

  7. Ahmed, M.F., Haas, C.T., Haas, R.: Automatic detection of cylindrical objects in built facilities. J. Comput. Civ. Eng. 28(3), 04014009 (2014). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000329

    Article  Google Scholar 

  8. Hamledari, H., McCabe, B., Davari, S.: Automated computer vision-based detection of components of under-construction indoor partitions. Autom. Constr. 74, 78–94 (2017). https://doi.org/10.1016/j.autcon.2016.11.009

    Article  Google Scholar 

  9. Oskouie, P., Becerik-Gerber, B., Soibelman, L.: Automated recognition of building façades for creation of As-Is Mock-Up 3D models. J. Comput. Civ. Eng. 31(6), 04017059 (2017). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000711

    Article  Google Scholar 

  10. Quijano, A., Prieto, F.: 3D Semantic modeling of indoor environments based on point clouds and contextual relationships. Ingeniería 21(3) (2016)

    Google Scholar 

  11. Bassier, M., Vergauwen, M., Van Genechten, B.: Automated semantic labelling of 3D vector models for scan-to-BIM. In: Proceedings of the 4th Annual International Conference on Architecture and Civil Engineering (ACE2016), pp. 93–100 (2016)

    Google Scholar 

  12. Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric building models from indoor point clouds. Comput. Graph. 54, 94–103 (2016). https://doi.org/10.1016/j.cag.2015.07.008

    Article  Google Scholar 

  13. Anagnostopoulos, I., Pătrăucean, V., Brilakis, I., Vela, P.: Detection of walls, floors, and ceilings in point cloud data. In: Construction Research Congress, pp. 2302–2311 (2016). https://doi.org/10.1061/9780784479827.229

  14. Mura, C., Mattausch, O., Pajarola, R.: Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements. Comput. Graph. Forum 35, 179–188 (2016). https://doi.org/10.1111/cgf.13015

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, A., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2016)

  18. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. arXiv preprint arXiv:1702.04405 (2017)

  19. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3d data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  20. Czerniawski, T., Sankaran, B., Nahangi, M., Haas, C., Leite, F.: 6D DBSCAN-based segmentation of building point clouds for planar object classification. Autom. Constr. 88, 44–58 (2018). https://doi.org/10.1016/j.autcon.2017.12.029

    Article  Google Scholar 

  21. Nguyen, D. T., Hua, B.S., Yu, L.F., Yeung, S.K.: A robust 3d-2d interactive tool for scene segmentation and annotation. arXiv preprint arXiv:1610.05883 (2016)

  22. Hua, B.S., Pham, Q.H., Nguyen, D.T., Tran, M.K., Yu, L.F., Yeung, S.K.: SceneNN: a scene meshes dataset with annotations. In: The IEEE Fourth International Conference on 3D Vision (3DV), pp. 92–101 (2016)

    Google Scholar 

  23. Chang, A., Dai, A., Funkhouser, T., Halber, M., Nießner, M., Savva, M., et al.: Matterport3D: learning from RGB-D data in indoor environments. The Computing Research Repository (CoRR), 1709.06158 (2017)

    Google Scholar 

  24. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2D-3D-semantic data for indoor scene understanding. The Computing Research Repository (CoRR), 1702.01105 (2017)

    Google Scholar 

  25. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 567 (2015)

    Google Scholar 

  26. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Computer Vision–ECCV, pp. 746–760 (2012)

    Google Scholar 

  27. Firman, M.: RGBD datasets: past, present and future. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 19–31 (2016)

    Google Scholar 

  28. Dimitrov, A., Golparvar-Fard, M.: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems. Autom. Constr. 51, 32–45 (2015). https://doi.org/10.1016/j.autcon.2014.12.015

    Article  Google Scholar 

  29. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (TOG) 36(3), 24 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by the National Science Foundation (NSF) under award number 1562438. Their support is gratefully acknowledged. Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Mention of trade names in this article does not imply endorsement by the University of Texas at Austin or NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Czerniawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czerniawski, T., Leite, F. (2018). 3DFacilities: Annotated 3D Reconstructions of Building Facilities. In: Smith, I., Domer, B. (eds) Advanced Computing Strategies for Engineering. EG-ICE 2018. Lecture Notes in Computer Science(), vol 10863. Springer, Cham. https://doi.org/10.1007/978-3-319-91635-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91635-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91634-7

  • Online ISBN: 978-3-319-91635-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics