Skip to main content

Development and Improvement of Deep Learning Based Automated Defect Detection for Sewer Pipe Inspection Using Faster R-CNN

  • Conference paper
  • First Online:
Advanced Computing Strategies for Engineering (EG-ICE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10864))

Abstract

Currently, visual inspection techniques, especially closed-circuit television (CCTV), are commonly utilized for sewer pipe inspection. Computer vision techniques are applied for automated interpretation of CCTV images to identify pipe defects. However, conventional computer vision techniques require complex handcrafted feature extraction and large amount of image pre-processing. In this study, a deep learning based approach is developed for sewer pipe defect detection using faster region-based convolutional neural network (faster R-CNN). 3000 images were collected from CCTV inspection videos of sewer pipes, among which 85% were used for training and validation and 15% are for testing. The detection model was trained and evaluated in terms of mean average precision (mAP), missing rate, detection speed and training time. The proposed approach is demonstrated to be applicable for detecting sewer pipe defects accurately with a high mAP and low missing rate. In addition, the initial model was improved by investigating the influence of dataset size, initialization network type and training mode, as well as network hyper-parameters on model performance. The improved model achieved a mAP of 83% and fast detection speed. This study has the potential for addressing similar object detection problems in the architecture, engineering and construction (AEC) industry and provides references when designing the deep learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASCE: Infrastructure Report Card (2017)

    Google Scholar 

  2. EPA: Why control sanitary sewer overflows, The United States (2004)

    Google Scholar 

  3. EPA: Report to Congress on Impacts and Control of Combined Sewer Overflows and Sanitary Sewer Overflows (2004)

    Google Scholar 

  4. Abdel-Qader, I., Abudayyeh, O., Kelly, M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civil Eng. 17(4), 255–263 (2003)

    Article  Google Scholar 

  5. Yamaguchi, T., Nakamura, S., Saegusa, R., Hashimoto, S.: Image-based crack detection for real concrete surfaces. IEEJ Trans. Electr. Electron. Eng. 3(1), 128–135 (2008)

    Article  Google Scholar 

  6. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., Fieguth, P.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 29(2), 196–210 (2015)

    Article  Google Scholar 

  7. Yu, S.-N., Jang, J.-H., Han, C.-S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16(3), 255–261 (2007)

    Article  Google Scholar 

  8. Adhikari, R.S., Moselhi, O., Bagchi, A.: Image-based retrieval of concrete crack properties for bridge inspection. Autom. in Constr. 39, 180–194 (2014)

    Article  Google Scholar 

  9. Li, G., He, S., Ju, Y., Du, K.: Long-distance precision inspection method for bridge cracks with image processing. Autom. Constr. 41, 83–95 (2014)

    Article  Google Scholar 

  10. Sinha, S.K., Fieguth, P.W.: Morphological segmentation and classification of underground pipe images. Mach. Vis. Appl. 17(1), 21–31 (2006)

    Article  Google Scholar 

  11. Iyer, S., Sinha, S.K.: Segmentation of pipe images for crack detection in buried sewers. Comput.-Aided Civil Infrastruct. Eng. 21(6), 395–410 (2006)

    Article  Google Scholar 

  12. Sinha, S.K., Fieguth, P.W.: Automated detection of cracks in buried concrete pipe images. Autom. Constr. 15(1), 58–72 (2006)

    Article  Google Scholar 

  13. Halfawy, M.R., Hengmeechai, J.: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections. J. Infrastruct. Syst. 20(2), 04013014 (2014)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Cha, Y.-J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civil Infrastruct. Eng. 32(5), 361–378 (2017)

    Article  Google Scholar 

  16. Yokoyama, S., Matsumoto, T.: Development of an automatic detector of cracks in concrete using machine learning. Procedia Eng. 171(Suppl. C), 1250–1255 (2017)

    Article  Google Scholar 

  17. Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N., Loupos, C.: Deep convolutional neural networks for efficient vision based tunnel inspection. In: 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 335–342. IEEE (2015)

    Google Scholar 

  18. Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA. IEEE (2016)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  20. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  22. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

    Chapter  Google Scholar 

  23. Sun, X., Wu, P., Hoi, S.C.: Face detection using deep learning: an improved faster RCNN approach. arXiv preprint arXiv:1701.08289 (2017)

  24. Yongjie, Z., Jian, W., Xin, Y.: Real-time vehicle detection and tracking in video based on faster R-CNN. J. Phys: Conf. Ser. 887(1), 012068 (2017)

    Google Scholar 

  25. Ibadov, S., Ibadov, R., Kalmukov, B., Krutov, V.: Algorithm for detecting violations of traffic rules based on computer vision approaches. In: MATEC Web Conference, vol. 132, p. 05005 (2017)

    Article  Google Scholar 

  26. Xu, Y., Yu, G., Wang, Y., Wu, X., Ma, Y.: Car detection from low-altitude UAV imagery with the faster R-CNN. J. Adv. Transp. 2017, 10 (2017)

    Google Scholar 

  27. Jung, H., Choi, M.-K., Jung, J., Lee, J.-H., Kwon, S., Jung, W.Y.: ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 934–940. IEEE (2017)

    Google Scholar 

  28. Zuo, Z., Yu, K., Zhou, Q., Wang, X., Li, T.: Traffic signs detection based on faster R-CNN. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 286–288. IEEE (2017)

    Google Scholar 

  29. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T.M., An, W.: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Autom. Constr. 85(Suppl. C), 1–9 (2018)

    Article  Google Scholar 

  30. VOC: PASCAL VOC Detection results, vol. 2017 (2012)

    Google Scholar 

  31. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  34. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York City (1986)

    Google Scholar 

  35. Tzutalin, LabelImg, vol. 2015, Git code

    Google Scholar 

  36. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  37. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. P. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Cheng, J.C.P. (2018). Development and Improvement of Deep Learning Based Automated Defect Detection for Sewer Pipe Inspection Using Faster R-CNN. In: Smith, I., Domer, B. (eds) Advanced Computing Strategies for Engineering. EG-ICE 2018. Lecture Notes in Computer Science(), vol 10864. Springer, Cham. https://doi.org/10.1007/978-3-319-91638-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91638-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91637-8

  • Online ISBN: 978-3-319-91638-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics