Skip to main content

Understanding Music Interaction, and Why It Matters

  • Chapter
  • First Online:
New Directions in Music and Human-Computer Interaction

Abstract

This is the introductory chapter of a book dedicated to new research in, and emerging new understandings of, music and human-computer interaction—known for short as music interaction. Music interaction research plays a key role in innovative approaches to diverse musical activities, including performance, composition, education, analysis, production and collaborative music making. Music interaction is pivotal in new research directions in a range of activities, including audience participation, interaction between music and dancers, tools for algorithmic music, music video games, audio games, turntablism and live coding. More generally, music provides a powerful source of challenges and new ideas for human-computer interaction (HCI). This introductory chapter reviews the relationship between music and human-computer interaction and outlines research themes and issues that emerge from the collected work of researchers and practitioners in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelis V, Holland S, Clayton M, Upton PJ (2013) Testing a computational model of rhythm perception using polyrhythmic stimuli. J New Music Res 42(1)

    Article  Google Scholar 

  • Arom S (1991) African polyphony and polyrhythm: musical structure and methodology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baecker R (1969) Picture driven animation. In: Proceedings of the AFIPS spring joint computer conference, vol 34, pp 273–288

    Google Scholar 

  • Balzano GJ (1980) The group-theoretic description of 12-fold and microtonal pitch systems. Comput Music J 4(4). Winter 1980

    Article  Google Scholar 

  • Beaudouin-Lafon M (2000) Instrumental Interaction: an interaction model for designing post-WIMP user interfaces. In: Proceedings ACM CHI ‘00, pp 446–453

    Google Scholar 

  • Blanchard C, Burgess S, Harvill Y, Lanier J, Lasko A, Oberman M, Teitel M (1990) Reality built for two: a virtual reality tool. ACM SIGGRAPH Comput Graph 24(2):35–36. ACM

    Article  Google Scholar 

  • Bongers B (2000) Physical interfaces in the electronic arts. Trends in gestural control of music, pp 41–70

    Google Scholar 

  • Bouwer A, Holland S, Dalgleish M (2013) The haptic bracelets: learning multi-limb rhythm skills from haptic stimuli while reading. In: Holland S, Wilkie K, Mulholland P, Seago A (eds) Music and human-computer interaction. Cultural Computing. Springer, London

    Chapter  Google Scholar 

  • Brown DE (1991) Human universals. McGraw-Hill, New York

    Google Scholar 

  • Brown C, Paine G (2019) A case study in collaborative learning via DMIs for participatory music: interactive Tango Milonga. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Brown S, Martinez MJ, Parsons LM (2004) Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport 15:2033–2037

    Article  Google Scholar 

  • Buxton W (2008) My vision isn’t my vision: making a career out of getting back to where I started. In: Erickson T, McDonald D (eds) HCI remixed: reflections on works that have influenced the HCI community. MIT Press, Cambridge, MA, pp 7–12

    Google Scholar 

  • Camci A, Cakmak C, Forbes AG (2019) Applying game mechanics to networked music HCI applications. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Church L, Nash C, Blackwell A (2010) Liveness in notation use: from music to programming. Psychology of Programming Interest Group PPIG 2010

    Google Scholar 

  • Cross I (2016) The nature of music and its evolution. In: Hallam S, Cross I, Thaut M (eds) Oxford handbook of music psychology, 2nd edn. Oxford, Oxford University Press, pp 3–17

    Google Scholar 

  • Darrow A (2006) The role of music in deaf culture: deaf students’ perception of emotion in music. J Music Ther 43(1):2–15. 1 March 2006, https://doi.org/10.1093/jmt/43.1.2

    Article  Google Scholar 

  • DʼErrico F, Henshilwood C, Lawson G, Vanhaeren M, Tillier A-M, Soressi M et al (2003) Archaeological evidence for the emergence of language, symbolism, and music—an alternative multidisciplinary perspective. J World Prehistory 17(1):1–70

    Google Scholar 

  • Dourish P (2004) Where the action is: the foundations of embodied interaction. MIT Press

    Google Scholar 

  • Duchesne-Guillemin M (1963) Découverte D’une Gamme Babylonienne. Revue De Musicologie 49(126):3–17

    Article  Google Scholar 

  • Engelbart DC, English WK (1968) A research center for augmenting human intellect. In: Proceedings of the December 9–11, 1968, fall joint computer conference, part I (AFIPS ‘68 (Fall, part I)). ACM, New York, NY, USA, pp 395–410

    Google Scholar 

  • Fallman D (2003) Design-oriented human-computer Interaction. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’03. ACM, New York, NY, USA, pp 225–232. https://doi.org/10.1145/642611.642652

  • Fenichel E (2002) The musical lives of babies and families. Zero Three 23(1). National Center for Infants, Toddlers and Families, Washington DC

    Google Scholar 

  • Fitch WT (2006) The biology and evolution of music: a comparative perspective. Cognition 100:173–215

    Article  Google Scholar 

  • Garcia J, Tsandilas T, Agon C, Mackay W (2012) Interactive paper substrates to support musical creation. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 1825–1828

    Google Scholar 

  • Hamilton R (2019) Mediated musical interactions in virtual environments. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Hargreaves D, North A (1997) The social psychology of music. Oxford University Press, Oxford

    Google Scholar 

  • Harrison S, Tatar D, Sengers P (2007) The three paradigms of HCI. In: Alt. Chi. session at the SIGCHI conference on human factors in computing systems, San Jose, California, USA, pp 1–18

    Google Scholar 

  • Hein E, Srinivasan S (2019) The Groove Pizza. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Hödl O, Kayali F, Fitzpatrick G, Holland S (2019) TMAP design cards for technology-mediated audience participation in live music. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Holland S (1989) Artificial intelligence, education and music. PhD thesis, The Open University, Milton Keynes, UK

    Google Scholar 

  • Holland S (2000) Artificial intelligence in music education: a critical review, pp 239–274. In: Miranda ER (ed) Artificial intelligence in music education: a critical review. Readings in music and artificial intelligence. Routledge, pp 249–284

    Google Scholar 

  • Holland S, Fiebrink R (2019) Machine learning, music and creativity: an interview with Rebecca Fiebrink. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Holland S, Wilkie K, Bouwer A, Dalgleish M, Mulholland P (2011) Whole body interaction in abstract domains. In: England D (ed) Whole body interaction. Human–computer interaction series, Springer Verlag, London. ISBN 978-0-85729-432-6

    Chapter  Google Scholar 

  • Holland S, Wilkie K, Mulholland P, Seago A (2013) Music interaction: understanding music and human-computer interaction. In: Holland S, Wilkie K, Mulholland P, Seago A (eds) Music and human-computer interaction, pp 1–28

    Chapter  Google Scholar 

  • Holland S, Wright RL, Wing A, Crevoisier T, Hödl O, Canelli M (2014) A Gait Rehabilitatin pilot study using tactile cueing following Hemiparetic Stroke. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare Pervasive Health 2014, pp 402–405

    Google Scholar 

  • Holland S, McPherson AP, Mackay WE, Wanderley MM, Gurevich MD, Mudd TW, O’Modhrain S, Wilkie KL, Malloch J, Garcia J, Johnston A (2016) Music and HCI. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’16). ACM, New York, NY, USA, 3339–3346

    Google Scholar 

  • Holland S, Bouwer A, Hödl O (2018) Haptics for the development of fundamental rhythm skills, including multi-limb coordination. In: Papetti S, Saitis C (eds) Musical haptics. Springer series on touch and haptic systems. Springer International Publishing, pp 215–237

    Google Scholar 

  • Honing H, Ladinig O, Winkler I, Háden G (2009) Is beat induction innate or learned? Probing emergent meter perception in adults and newborns using event-related brain potentials (ERP). Ann N Y Acad Sci 1169:93–96

    Article  Google Scholar 

  • Hook J, Schofield G, Taylor R, Bartindale T, McCarthy J, Wright P (2012) Exploring HCI’s relationship with liveness. CHI ‘12 extended abstracts on human factors in computing systems (CHI EA ‘12). ACM, New York, NY, USA, pp 2771–2774

    Google Scholar 

  • Hunt A, Wanderley MM, Kirk R (2000) Towards a model for instrumental mapping in expert musical interaction. In: ICMC

    Google Scholar 

  • Hutchinson H, Mackay W, Westerlund B, Bederson BB, Druin A, Plaisant C, Beaudouin-Lafon M et al (2003) Technology probes: inspiring design for and with families. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 17–24

    Google Scholar 

  • Justus T, Jamshed B (2002) Music perception and cognition. In: Stevens’ handbook of experimental psychology. Wiley, pp 453–492

    Google Scholar 

  • Koetsier T (2001) On the prehistory of programmable machines: musical automata, looms, calculators. Mech Mach Theory 36:589–603

    Article  Google Scholar 

  • Lanier J (1989) Personal communication with Simon Holland and other attendees at 1989. In: Nato advanced research workshop on multimedia interface design in education, Lucca, Italy

    Google Scholar 

  • Longuet-Higgins HC (1976) Perception of melodies. Nature 263:646–653

    Article  Google Scholar 

  • Mackay WE (2000) Responding to cognitive overload: co-adaptation between users and technology. Intellectica 30(1):177–193

    Google Scholar 

  • Magnusson T (2010) Designing constraints: composing and performing with digital musical systems. Comput Music J 34(4):62–73

    Article  Google Scholar 

  • Malloch J, Garcia J, Wanderley MM, Mackay WE, Beaudouin-Lafon M, Huot S (2019) A design WorkBench for interactive music systems. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Martin CP, Gardner H (2019) Free-improvised rehearsal-as-research for musical HCI. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • McPherson A, Benford S (2019) Music, design and ethnography: an interview with Steve Benford. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • McPherson A, Verplank B (2019) The poetry of strange connections: an interview with Bill Verplank. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • McPherson A, Morreale F, Harrison J (2019) Musical instruments for novices: comparing NIME, HCI and Crowdfunding approaches. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Mehr SA et al (2016) For 5-month olds melodies are social. Psychol Sci 27:486–501

    Article  Google Scholar 

  • Milne A (2019) XronoMorph: investigating paths through rhythmic space. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Milne AJ, Holland S (2016) Empirically testing Tonnetz, voice-leading, and spectral models of perceived triadic distance. J Math Music 10(1):59–85

    Article  MathSciNet  Google Scholar 

  • Milne AJ, Carlé M, Sethares WA, Noll T, Holland S (2011) Scratching the scale labyrinth. International conference on mathematics and computation in music. Springer, Berlin, Heidelberg, pp 180–195

    Chapter  Google Scholar 

  • Mithen S (2006) The ‘Singing Neanderthals’: the origins of music, language, mind and body. Camb Archaeol J 16:97–112

    Article  Google Scholar 

  • Mudd T (2019) Material-oriented musical interactions. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Mudd T, Andersen K (2019) Making as research: an interview with Kristina Andersen. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • NRC (1970) From handel to haydn to the headless musician, science dimension 2(3), June 1970. http://ieee.ca/millennium/electronic_music/em_headless.html

  • NRC (1971). The music machine. 11 minute 16 mm film produced by the National Research Council of Canada. http://www.billbuxton.com

  • Pennycook BW (1985) Computer-music interfaces: a survey. ACM Comput Surv 17(2):267–289

    Article  Google Scholar 

  • Poupyrev I, Lyons MJ, Fels S, Blaine TB (2001) New interfaces for musical expression. In: Workshop proposal for SIGCHI 2001, Seattle, WA. http://www.nime.org/2001/docs/proposal.pdf

  • Prechtl A, Milne AJ, Holland S, Laney R, Sharp DB (2009) A midi sequencer that widens access to the compositional possibilities of novel tunings. Comput Music J 36(1):42–54

    Article  Google Scholar 

  • Rasmussen J (1986) Information processing and human-machine interaction: an approach to cognitive engineering. Elsevier Science Inc, New York, USA

    Google Scholar 

  • Salimpoor VN et al (2013) Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340:216–219

    Article  Google Scholar 

  • Standley JM (2011) Efficacy of music therapy for premature infants in the neonatal intensive care unit: a meta-analysis. Arch Dis Childhood Fetal Neonatal Ed 96:Fa52

    Article  Google Scholar 

  • Sutherland IE (1964) Sketch pad a man-machine graphical communication system. In: Proceedings of the SHARE design automation workshop. ACM, pp 6–329

    Google Scholar 

  • Tanaka A (2000) Musical performance practice on sensor-based instruments. Trends Gestural Control Music 13(389–405):284

    Google Scholar 

  • Tanaka A (2019) Embodied musical interaction: body physiology, cross modality, and sonic experience. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Tanimoto SL (1990) VIVA: a visual language for image processing. J Vis Lang Comput 1(2):127–139

    Article  Google Scholar 

  • Toussaint GT (2013) The geometry of musical rhythm: what makes a “Good” rhythm good?. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Tuuri K, Jaana P, Pirhonen A (2017) Who controls who? Embodied control within human–technology choreographies. Interact Comput 29(4):494–511

    Google Scholar 

  • Ungvary T, Vertegaal R (2000) Cognition and physicality in musical cyberinstruments. In: Trends in gestural control of music, pp 371–386

    Google Scholar 

  • Vuilleumier P, Trost W (2015) Music and emotions: from enchantment to entrainment. Neurosci Mus V Cogn Stimul Rehabilit 1337:212–222. https://doi.org/10.1111/nyas.12676

    Article  Google Scholar 

  • Wallis I, Ingalls T, Campana E, Vuong C (2013) Amateur musicians, long-term engagement, and HCI. In: Music and human-computer interaction. Springer, London, pp 49–66

    Chapter  Google Scholar 

  • Wanderley MM, Battier M (2000) Trends in gestural control of music. IRCAM, Centre Pompidou

    Google Scholar 

  • Wanderley MM, Mackay W (2019) HCI, music and art: an interview with Wendy Mackay. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Wilkie K, Holland S, Mulholland P (2009) Evaluating musical software using conceptual metaphors. In: Blackwell A (ed) Proceedings of the 23rd British HCI group annual conference on people and computers. pp 232–237. ISSN 1477-9358

    Google Scholar 

  • Wilkie K, Holland S, Mulholland P (2010) What can the language of musicians tell us about music interaction design? Comput Music J Winter 34(4):34–48. Massachusetts Institute of Technology

    Article  Google Scholar 

  • Xenakis I (1992) Formalized music: thought and mathematics in composition, second, revised English edition, with additional material translated by Sharon Kanach. Harmonologia Series No. 6. Pendragon Press, Stuyvesant, NY. ISBN 1-57647-079-2

    Google Scholar 

  • Yuksel BF, Oleson KB, Chang R, Jacob RJK (2019) Detecting and adapting to users’ cognitive and affective state to develop intelligent musical interfaces. In: Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley MM (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6

    Google Scholar 

  • Zhang Y, Cai J, An L, Hui F, Ren T, Ma H et al (2017) Does music therapy enhance behavioral and cognitive function in elderly dementia patients? A systematic review and meta-analysis. Ageing Res Rev 35:1–11

    Article  Google Scholar 

  • Zimmerman TG (1982) An optical flex sensor US patent 4542291 VPL Res Inc Redwood City California US

    Google Scholar 

  • Zimmerman TG, Lanier J, Blanchard C, Bryson S, Harvill Y (1986) A hand gesture interface device. In: Carroll JM, Tanner PP (eds) Proceedings of the SIGCH conference on human factors in computing systems (CHI ’87). ACM, New York, pp 189–192

    Google Scholar 

Download references

Acknowledgements

The editors would like to thank workshop co-organisers not represented by chapters: Sile O’Modhrain, Michael Gurevich and Andrew Johnston. We would also like to thank workshop participants not otherwise represented in this book who made valued contributions to discussions at the workshop: Ge Wang, Gian-Marco Schmid, Jordi Janer, Jeff Gregorio, Sam Ferguson, Frédéric Bevilacqua, Edgar Berdahl and Mathieu Barthet. Finally, we would like to thank Helen Desmond at Springer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holland, S., Mudd, T., Wilkie-McKenna, K., McPherson, A., Wanderley, M.M. (2019). Understanding Music Interaction, and Why It Matters. In: Holland, S., Mudd, T., Wilkie-McKenna, K., McPherson, A., Wanderley, M. (eds) New Directions in Music and Human-Computer Interaction. Springer Series on Cultural Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-92069-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92069-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92068-9

  • Online ISBN: 978-3-319-92069-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics