Skip to main content

A Study of Hand-Crafted and Naturally Learned Features for Fingerprint Presentation Attack Detection

  • Chapter
  • First Online:
Handbook of Biometric Anti-Spoofing

Abstract

Fingerprint-based biometric systems have shown reliability in terms of accuracy in both biometric and forensic scenarios. Although fingerprint systems are easy to use, they are susceptible to presentation attacks that can be carried out by employing lifted or latent fingerprints. This work presents a systematic study of the fingerprint presentation attack detection (PAD aka., spoofing detection) using textural features. To this end, this chapter reports an evaluation of both hand-crafted features and naturally learned features via deep learning techniques for fingerprint presentation attack detection. The evaluation is presented on publicly available fake fingerprint database that consists of both bona fide (i.e., real) and presentation attack fingerprint samples captured by capacitive, optical and thermal sensors. The results indicate the need for further approaches that can detect attacks across data from different sensors.

K. B. Raja and R. Raghavendra—Equal contribution of authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://atvs.ii.uam.es/atvs/databases.jsp.

  2. 2.

    https://atvs.ii.uam.es/atvs/databases.jsp.

References

  1. Auksorius E, Boccara AC (2015) Fingerprint imaging from the inside of a finger with full-field optical coherence tomography. Biomed Opt Express 6(11)

    Article  Google Scholar 

  2. Bicz A, Bicz W (2016) Development of ultrasonic finger reader based on ultrasonic holography having sensor area with 80 mm diameter. In: 2016 international conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–6

    Google Scholar 

  3. Yu X, Xiong Q, Luo Y, Wang N, Wang L, Tey HL, Liu L (2016) Contrast enhanced subsurface fingerprint detection using high-speed optical coherence tomography. IEEE Photonics Technol Lett 29(1):70–73

    Article  Google Scholar 

  4. Harms F, Dalimier E, Boccara AC (2014) En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition. In: SPIE Defense+ Security, pp 90,750E–90,750E (International society for optics and photonics)

    Google Scholar 

  5. Raja KB, Auksorius E, Raghavendra R, Boccara AC, Busch C (2017) Robust verification with subsurface fingerprint recognition using full field optical coherence tomography. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 144–152

    Google Scholar 

  6. Sousedik C, Breithaupt R, Busch C (2013) Volumetric fingerprint data analysis using optical coherence tomography. In: 2013 international conference of the biometrics special interest group (BIOSIG). IEEE, pp 1–6

    Google Scholar 

  7. Galbally J (2015) Anti-spoofing, fingerprint databases. Encyclopedia of biometrics, pp 79–86

    Chapter  Google Scholar 

  8. Ghiani L, Yambay DA, Mura V, Marcialis GL, Roli F, Schuckers SA (2017) Review of the fingerprint liveness detection (LivDet) competition series: 2009 to 2015. Image Vis Comput 58:110–128

    Article  Google Scholar 

  9. Jain A, Ross A, Prabhakar S (2001) Fingerprint matching using minutiae and texture features. In: 2001 international conference on image processing, 2001 proceedings, vol 3. IEEE, pp 282–285

    Google Scholar 

  10. Yoon S, Feng J, Jain AK (2012) Altered fingerprints: analysis and detection. IEEE Trans Pattern Anal Mach Intell 34(3):451–464

    Article  Google Scholar 

  11. Jain AK, Prabhakar S, Hong L, Pankanti S (2000) Filterbank-based fingerprint matching. IEEE Trans Image Process 9(5):846–859

    Article  Google Scholar 

  12. Gottschlich C, Marasco E, Yang AY, Cukic B (2014) Fingerprint liveness detection based on histograms of invariant gradients. In: 2014 IEEE international joint conference on biometrics (IJCB). IEEE, pp 1–7

    Google Scholar 

  13. Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2014) Wavelet-Markov local descriptor for detecting fake fingerprints. Electron Lett 50(6):439–441

    Article  Google Scholar 

  14. Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2015) Local contrast phase descriptor for fingerprint liveness detection. Pattern Recognit 48(4):1050–1058

    Article  Google Scholar 

  15. Marasco E, Sansone C (2012) Combining perspiration-and morphology-based static features for fingerprint liveness detection. Pattern Recognit Lett 33(9):1148–1156

    Article  Google Scholar 

  16. Sousedik C, Busch C (2014) Presentation attack detection methods for fingerprint recognition systems: a survey. IET Biom 3(4):219–233

    Article  Google Scholar 

  17. Marasco E, Ross A (2015) A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput Surv (CSUR) 47(2):28

    Google Scholar 

  18. Galbally J, Alonso-Fernandez F, Fierrez J, Ortega-Garcia J (2009) Fingerprint liveness detection based on quality measures. In: 2009 international conference on biometrics, identity and security (BIdS). IEEE, pp 1–8

    Google Scholar 

  19. Galbally J, Marcel S, Fierrez J (2014) Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans Image Process 23(2):710–724

    Article  MathSciNet  Google Scholar 

  20. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition. Springer Science & Business Media, New York

    Book  Google Scholar 

  21. Menotti D, Chiachia G, Pinto A, Schwartz WR, Pedrini H, Falcão AX, Rocha A (2015) Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans Inf Forensics Secur 10(4):864–879

    Article  Google Scholar 

  22. Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213

    Article  Google Scholar 

  23. Ghiani L, Marcialis GL, Roli F (2012) Fingerprint liveness detection by local phase quantization. In: 2012 21st international conference on pattern recognition (ICPR). IEEE, pp 537–540

    Google Scholar 

  24. Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2013) Fingerprint liveness detection based on weber local image descriptor. In: 2013 IEEE workshop on biometric measurements and systems for security and medical applications (BIOMS). IEEE, pp 46–50

    Google Scholar 

  25. Jia X, Yang X, Zang Y, Zhang N, Dai R, Tian J, Zhao J (2013) Multi-scale block local ternary patterns for fingerprints vitality detection. In: 2013 international conference on biometrics (ICB). IEEE, pp 1–6

    Google Scholar 

  26. Ghiani L, Hadid A, Marcialis GL, Roli F (2013) Fingerprint liveness detection using binarized statistical image features. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS). IEEE, pp 1–6

    Google Scholar 

  27. Kannala J, Rahtu E (2012) BSIF: binarized statistical image features. In: 21st international conference on pattern recognition (ICPR) 2012. IEEE, pp 1363–1366

    Google Scholar 

  28. Gottschlich C (2016) Convolution comparison pattern: an efficient local image descriptor for fingerprint liveness detection. PloS One 11(2), e0148,552

    Article  Google Scholar 

  29. Kim S, Park B, Song BS, Yang S (2016) Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recognit Lett 77, 58–65. https://doi.org/10.1016/j.patrec.2016.03.015. http://www.sciencedirect.com/science/article/pii/S0167865516300198

    Article  Google Scholar 

  30. Nogueira RF, de Alencar Lotufo R, Machado RC (2014) Evaluating software-based fingerprint liveness detection using convolutional networks and local binary patterns. In: 2014 IEEE workshop on biometric measurements and systems for security and medical applications (BIOMS) proceedings. IEEE, pp 22–29

    Google Scholar 

  31. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  32. Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. In: Elmoataz A, Lezoray O, Nouboud F, Mammass D (eds) Image and signal processing, vol 5099. Springer, Berlin, pp 236–243

    Google Scholar 

  33. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems, vol 25. Curran Associates, Inc, pp 1097–1105

    Google Scholar 

  34. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR. arXiv:1409.1556

  35. Raghavendra R, Raja KB, Venkatesh S, Busch C (2017) Transferable deep-CNN features for detecting digital and print-scanned morphed face images. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 1822–1830

    Google Scholar 

  36. Tolosana R, Gomez-Barrero M, Kolberg J, Morales A, Busch C, Ortega-Garcia J (2018) Towards fingerprint presentation attack detection based on convolutional neural networks and short wave infrared imaging. In: proceedings of the IEEE 17th international conference of the biometrics special interest group (BIOSIG), Darmstadt, Germany, September 2018

    Google Scholar 

  37. Keilbach P, Kolberg J, Gomez-Barrero M, Busch C, Langweg H (2018) Fingerprint presentation attack detection using laser speckle contrast imaging. In: proceedings of the IEEE 17th international conference of the biometrics special interest group (BIOSIG), Darmstadt, Germany, September 2018

    Google Scholar 

  38. Gomez-Barrero M, Kolberg J, Busch C (2018) Towards fingerprint presentation attack detection based on short wave infrared imaging and spectral signatures. In: proceedings Norwegian Information Security Conference (NISK), Svalbard, Norway, September 2018

    Google Scholar 

Download references

Acknowledgements

This work was carried out under the funding for SWAN project from the Research Council of Norway under Grant No. IKTPLUSS-248030/O70. This work was partially supported by the German Federal Ministry of Education and Research (BMBF) as well as by the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within the Center for Research in Security and Privacy (CRISP, www.crisp-da.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran B. Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja, K.B., Raghavendra, R., Venkatesh, S., Gomez-Barrero, M., Rathgeb, C., Busch, C. (2019). A Study of Hand-Crafted and Naturally Learned Features for Fingerprint Presentation Attack Detection. In: Marcel, S., Nixon, M., Fierrez, J., Evans, N. (eds) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-92627-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92627-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92626-1

  • Online ISBN: 978-3-319-92627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics