Skip to main content

Synthesis of Nanoporous Carbon and Their Application to Fuel Cell and Capacitor

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1153 Accesses

Abstract

In Sect. 6.1, syntheses of nanoporous carbons are summarized. Especially control of pore size distributions , which is necessary to enhance the electrode functions of fuel cells, capacitors, and so on, is introduced. In Sect. 6.2, applications of the nanoporous carbon to a polymer electrolyte fuel cell (PEFC) as well as direct methanol fuel cell (DMFC) are summarized; here, the nanocarbon was wrapped by polybenzimidazole , and then Pt-nanoparticles were deposited on it. Such obtained catalysts showed a very high PEFC durability and acted a high CO tolerant, high methanol oxidation reaction, durable, and efficient DMFC catalyst under high methanol concentration (4 M, 8 M). In Sect. 6.3, applications of the nanoporous carbon to electric double-layer (EDL) capacitors were summarized. Mesoporous and macroporous carbons showed surface area-dependent capacity properties. Specific microporous carbons with worm-like shape and appropriate pore size showed unusually high EDL capacities due to desolvation of electrolyte ions in the nanospace. Hierarchical porous structure with the micropores and mesopores was effective to yield high gravimetric EDL capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nature 2:591–594

    Article  Google Scholar 

  2. Dash RK, Yushi G, Gogotsi Y (2005) Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Microporous Mesoporous Mater 86:50–57

    Article  Google Scholar 

  3. Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudislo G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007

    Article  Google Scholar 

  4. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  Google Scholar 

  5. Ma Z, Kyotani T, Liu Z, Terasaki O, Tomita A (2001) Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chem Mater 13:4413–4415

    Article  Google Scholar 

  6. Urita K, Ide N, Isobe K, Furukawa H, Moriguchi I (2014) Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon. ACS Nano 8:3614–3619

    Article  Google Scholar 

  7. Kawashima D, Aihara T, Kobayashi Y, Kyotani T, Tomita A (2000) Preparation of mesoporous carbon from organic polymer/silica nanocomposite. Chem Mater 12:3397–3401

    Article  Google Scholar 

  8. Han S, Sohn K, Hyeon T (2000) Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chem Mater 12:3337–3341

    Article  Google Scholar 

  9. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746

    Article  Google Scholar 

  10. Lu A-H, Schmidt W, Spliethoff B, Schüth F (2003) Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv Mater 15:1602–1606

    Google Scholar 

  11. Che S, Lund K, Tatsumi T, Iijim S, Joo SH, Ryoo R, Terasaki O (2003) Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): SBA-15 silica and CMK-5 carbon. Angew Chem Int Ed Engl 42:2182–2185

    Article  Google Scholar 

  12. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbons. Adv Mater 13:677–681

    Article  Google Scholar 

  13. Che S, Garcia-Bennett AE, Liu X, Hodgkins RP, Wright PA, Zhao D, Terasaki O (2003) Synthesis of large-pore la3d mesoporous silica and its tubelike carbon replica. Angew Chem Int Ed Engl 42:3930–3934

    Article  Google Scholar 

  14. Zhang W-H, Liang C, Sun H, Shen Z, Guan Y, Ying P, Li C (2002) Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition. Adv Mater 14:1776–1778

    Google Scholar 

  15. Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Solid State Lett 7:A221–A223

    Article  Google Scholar 

  16. Moriguchi I, Nakahara F, Yamada H, Kudo T (2005) Electrical double-layer capacitive properties of colloidal crystal-templated nanoporous carbons. Stud Surf Sci Catal 156:589–594

    Article  Google Scholar 

  17. Tu J-S, Kang S, Yoon SB, Chai G (2002) Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J Am Chem Soc 124:9382–9383

    Google Scholar 

  18. Lei Z, Zhang U, Wang H, Ke Y, Li J, Li F, Xing J (2001) Fabrication well-ordered macroporous active carbon with a microporous framework. J Mater Chem 11:1975–1977

    Article  Google Scholar 

  19. Bosco JP, Sasaki K, Sadakane M, Ueda W, Chen JG (2010) Synthesis and characterization of three-dimensionally ordered macroporous (3DOM) tungsten carbide: application to direct methanol fuel cells. Chem Mater 22:966–973

    Article  Google Scholar 

  20. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172

    Article  Google Scholar 

  21. Chang H, Joo SH, Pak C (2007) Synthesis and characterization of mesoporous carbon for fuel cell applications. J Mater Chem 17:3078–3088

    Article  Google Scholar 

  22. Hayashi A, Kimijima KI, Miyamoto J, Yagi I (2009) Oxygen transfer and storage processes inside the mesopores of platinum-deposited mesoporous carbon catalyst thin-layer electrode. J Phys Chem C 113:12149–12153

    Article  Google Scholar 

  23. Minamida Y, Zhao X, Noda Z, Hayashi A, Sasaki K (2013) Characterization of MEAs fabricated by a carbon support with the nano-channel structure. ECS Trans 58:1105–1111

    Article  Google Scholar 

  24. Fang B, Kim JH, Kim MS, Yu JS (2013) Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Acc Chem Res 46:1397–1406

    Article  Google Scholar 

  25. Lai X, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618

    Article  Google Scholar 

  26. Speder J, Zana A, Spanos I, Kirkensgaard JJK, Mortensen K, Arenz M (2013) On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochem Commun 34:153–156

    Article  Google Scholar 

  27. Speder J, Zana A, Spanos I, Kirkensgaard JJK, Mortensen K, Hanzlik M, Arenz M (2014) Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts—the influence of the platinum to carbon ratio on the degradation rate. J Power Sources 261:14–22

    Article  Google Scholar 

  28. Balgis R, Sago S, Anilkumar GM, Ogi T, Okuyama K (2013) Self-organized macroporous carbon structure derived from phenolic resin via spray pyrolysis for high-performance electrocatalyst. ACS Appl Mater Interfaces 5:11944–11950

    Article  Google Scholar 

  29. Tintula KK, Jalajakshi A, Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2013) Durability of Pt/C and Pt/MC-PEDOT catalysts under simulated start-stop cycles in polymer electrolyte fuel cells. Fuel Cells 13:158–166

    Article  Google Scholar 

  30. Tintula KK, Sahu AK, Shahid A, Pitchumani S, Sridhar P, Shukla AK (2010) Mesoporous carbon and poly(3,4-ethylenedioxythiophene) composite as catalyst support for polymer electrolyte fuel cells. J Electrochem Soc 157:B1679–B1685

    Article  Google Scholar 

  31. Holdcroft S (2013) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26:381–393

    Article  Google Scholar 

  32. Aili D, Hansen MK, Pan C, Li Q, Christensen E, Jensen JO, Bjerrum NJ (2011) Phosphoric acid doped membranes based on Nafion®, PBI and their blends—membrane preparation, characterization and steam electrolysis testing. Int J Hydrogen Energy 36:6985–6993

    Article  Google Scholar 

  33. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  Google Scholar 

  34. Yang Z, Moriguchi I, Nakashima N (2015) Durable Pt electrocatalyst supported on a 3D nanoporous carbon shows high performance in a high-temperature polymer electrolyte fuel cell. ACS Appl Mater Interfaces 7:9800–9806

    Article  Google Scholar 

  35. Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst. MEA WG. ECS Trans. 41:775–784

    Article  Google Scholar 

  36. Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899

    Google Scholar 

  37. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176:444–451

    Article  Google Scholar 

  38. Huang S-Y, Ganesan P, Popov BN (2011) Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl Catal B 102:71–77

    Google Scholar 

  39. Gharibi H, Amani M, Pahlavanzadeh H, Kazemeini M (2013) Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell. Electrochim Acta 97:216–225

    Article  Google Scholar 

  40. Zana A, Speder J, Roefzaad M, Altmann L, Bäumer M, Arenz M (2013) Probing degradation by IL-TEM: the influence of stress test conditions on the degradation mechanism. J Electrochem Soc 160:F608–F615

    Article  Google Scholar 

  41. Zana A, Speder J, Reeler NEA, Vosch T, Arenz M (2013) Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: a Raman study. Electrochim Acta 114:455–461

    Article  Google Scholar 

  42. Di Noto V, Negro E, Polizzi S, Vezzù K, Toniolo L, Cavinato G (2014) Synthesis, studies and fuel cell performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int J Hydrogen Energy 39:2812–2827

    Article  Google Scholar 

  43. Negro E, Polizzi S, Vezzù K, Toniolo L, Cavinato G, Di Noto V (2014) Interplay between morphology and electrochemical performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int J Hydrogen Energy 39:2828–2841

    Article  Google Scholar 

  44. Berber MR, Hafez IH, Fujigaya T, Nakashima N (2014) Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions. J Mater Chem A 2:19053–19059

    Article  Google Scholar 

  45. Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21:1187–1190

    Article  Google Scholar 

  46. Berber MR, Fujigaya T, Sasaki K, Nakashima N (2013) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1–7

    Article  Google Scholar 

  47. Berber MR, Fujigaya T, Nakashima N (2014) High-temperature polymer electrolyte fuel cell using poly(vinylphosphonic acid) as an electrolyte shows a remarkable durability. ChemCatChem 6:567–571

    Article  Google Scholar 

  48. Yang Z, Hafez IH, Berber MR, Nakashima N (2015) An enhanced anode based on polymer-coated carbon black for use as a direct methanol fuel cell electrocatalyst. ChemCatChem 7:808–813

    Article  Google Scholar 

  49. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4:2736–2753

    Google Scholar 

  50. Koenigsmann C, Wong SS (2011) One-dimensional noble m electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci 4:1161–1176

    Article  Google Scholar 

  51. Ahmad H, Kamarudin SK, Hasran UA, Daud WRW (2011) A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells. Int J Hydrogen Energy 36:14668–14677

    Article  Google Scholar 

  52. Li X, Chen W-X, Zhao J, Xing W, Xu Z-D (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43:2168–2174

    Google Scholar 

  53. Heinzel A, Barragán VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74

    Article  Google Scholar 

  54. Paoletti C, Cemmi A, Giorgi L, Giorgi R, Pilloni L, Serra E, Pasquali M (2008) Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation. J Power Sources 183:84–91

    Article  Google Scholar 

  55. Bosco JP, Sasaki K, Sadakane M, Ueda W, Chen JG (2010) Synthesis and characterization of three-dimensionally ordered macroporous (3DOM) tungsten carbide: application to direct methanol fuel cells. Chem Mater 22:966–973

    Article  Google Scholar 

  56. Bahrami H, Faghri A (2013) Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation. J Power Sources 230:303–320

    Article  Google Scholar 

  57. Alia SM, Zhang G, Kisailus D, Li D, Gu S, Jensen K, Yan Y (2010) Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv Funct Mater 20:3742–3746

    Article  Google Scholar 

  58. Ding LX, Wang AL, Li GR, Liu ZQ, Zhao WX, Su CY, Tong YX (2012) Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134:5730–5733

    Article  Google Scholar 

  59. Lv H, Peng T, Wu P, Pan M, Mu S (2012) nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and co tolerance. J Mater Chem 22:9155–9160

    Article  Google Scholar 

  60. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299

    Article  Google Scholar 

  61. Su F, Zeng J, Bao X, Yu Y, Lee JY, Zhao XS (2005) Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem Mater 17:3960–3967

    Article  Google Scholar 

  62. Xue X, Ge J, Tian T, Liu C, Xing W, Lu T (2007) Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process. J Power Sources 172:560–569

    Article  Google Scholar 

  63. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2:6266–6291

    Article  Google Scholar 

  64. Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q (2003) Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem Commun 9:394–395

    Article  Google Scholar 

  65. Wang CH, Du HY, Tsai YT, Chen CP, Huang CJ, Chen LC, Chen KH, Shih HC (2007) High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC. J Power Sources 171:55–62

    Article  Google Scholar 

  66. Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC rlectrocatalysts—a review. J Power Sources 208:96–119

    Article  Google Scholar 

  67. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  Google Scholar 

  68. Yang Z, Berber MR, Nakashima N (2014) A polymer-coated carbon black-based fuel cell electrocatalyst with high CO-tolerance and durability in direct methanol oxidation. J Mater Chem A 2:18875–18880

    Article  Google Scholar 

  69. Yang Z, Kim C, Hirata S, Fujigaya T, Nakashima N (2015) Facile enhancement in CO-tolerance of a polymer-coated Pt electrocatalyst supported on carbon black: comparison between Vulcan and Ketjenblack. ACS Appl Mater Interfaces 7:15885–15891

    Article  Google Scholar 

  70. Yang Z, Moriguchi I, Nakashima N (2016) A highly-durable CO-torelant poly(vinylphosphoric acid)-coated electrocatalysy supported on a nanoporous carbon. ACS Appl Mater Interfaces 8:9030–9036

    Article  Google Scholar 

  71. Yang M, Guarecuco R, Disalvo FJ (2013) Mesoporous chromium nitride as high performance catalyst support for methanol electrooxidation. Chem Mater 25:1783–1787

    Article  Google Scholar 

  72. Zhao Y, Fan L, Zhong H, Li Y, Yang S (2007) Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv Funct Mater 17:1537–1541

    Article  Google Scholar 

  73. Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN, Li R, Ye S, Knights S, Botton G A, Sham T-K, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3:1775

    Google Scholar 

  74. Ding LX, Wang AL, Li GR, Liu ZQ, Zhao WX, Su CY, Tong YX (2012) Porous Pt-Ni-P Composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J Am Chem Soc 134:5730–5733

    Article  Google Scholar 

  75. Liao S, Holmes K-A, Tsaprailis H, Birss VI (2006) High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J Am Chem Soc 128:3504–3505

    Google Scholar 

  76. Yu LH, Kuo CH, Yeh CT (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010

    Article  Google Scholar 

  77. Samant PV, Rangel CM, Romero MH, Fernandes JB, Figueiredo JL (2005) Carbon supports for methanol oxidation catalyst. J Power Sources 151:79–84

    Article  Google Scholar 

  78. Gao MR, Gao Q, Jiang J, Cui CH, Yao WT, Yu SH (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem Int Ed 50:4905–4908

    Article  Google Scholar 

  79. Conway B E (1999) Electrochemical supercapacitors, 1st ed. Kluwer Academic/Plenum Publishers, New York, pp 105–124

    Google Scholar 

  80. Moriguchi I (2014) Nanostructure-controlled materials for electrochemical charging-discharging. Chem Lett 43:740–745

    Article  Google Scholar 

  81. Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 37:2049–2055

    Google Scholar 

  82. Zhou H, Shu S, Hibino M, Honma I (2003) electrochemical capacitance of self-ordered mesoporous carbon. J Power Sources 122:219–223

    Article  Google Scholar 

  83. Jang JH, Han S, Hyeon T, Oh SM (2003) electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123:79–85

    Article  Google Scholar 

  84. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  Google Scholar 

  85. Emmenegger Ch, Mauron Ph, Sudan P, Wenger P, Hermann V, Gallay R, Züttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Source 124:321–329

    Article  Google Scholar 

  86. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  Google Scholar 

  87. García-Gómez A, Moreno-Fernández G, Lobato B, Centeno TA (2015) Constant capacitance in nanopores of carbon monoliths. Phys Chem Chem Phys 17:15687–15790

    Article  Google Scholar 

  88. Jäckel N, Rodner M, Schreiber A, Jeongwook J, Zeiger M, Aslan M, Weingarth D, Presser V (2016) Anomalous or Regular capacitance? the influence of pore size dispersity on double-layer formation. J Power Sources 326:660–671

    Article  Google Scholar 

  89. Jäckel N, Simon P, Gogotsi Y, Presser V (2016) Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett 1:1262–1265

    Article  Google Scholar 

  90. Lozano-Castelló D, Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite: I. Activation by KOH. Carbon 39:741–749

    Article  Google Scholar 

  91. Portet C, Yang Z, Korenblit Y, Gogotsi Y, Mokaya R, Yushin G (2009) Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J Electrochem Soc 156:A1–A6

    Article  Google Scholar 

  92. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonizatoin of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361

    Article  Google Scholar 

  93. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565

    Article  Google Scholar 

  94. Gu W, Yushi G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ 3:424–473

    Article  Google Scholar 

  95. Lee J, Yoon S, Oh SM, Shin C-H, Hyeon T (2000) Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv Mater 12:359–362

    Google Scholar 

  96. Shiraishi S, Kurihara H, Tsubota H, Oyam A, Soneda Y, Yamada Y (2001) Electric double layer capacitance of highly porous carbon derived from lithium metal and PTFE. Solid-State Lett 4:A5–A8

    Article  Google Scholar 

  97. Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40:2955–2959

    Article  Google Scholar 

  98. Fuertes AB, Pico F, Rojo JM (2004) Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources 133:329–336

    Article  Google Scholar 

  99. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  Google Scholar 

  100. Kim Y-J, Masutzawa Y, Ozaki S, Endo M, Dresselhaus MS (2004) PVDC-based carbon material by chemical activation and its application to nonaqueous EDLC. J Electrochem Soc 151:E199–E205

    Google Scholar 

  101. Wang H, Köster TK-J, Trease NM, Ségalini J, Taberna PL, Simon P, Gogotsi Y, Grey CP (2011) Real-time NMR studies of electrochemical double-layer capacitors. J Am Chem Soc 133:19270–19273

    Google Scholar 

  102. Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna PL, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun 4:2701

    Article  Google Scholar 

  103. Ohba T, Kaneko K (2013) Competition of desolvation and stabilization of organic electrolytes in extremely narrow nanopores. J Phys Chem C 117:17092–17098

    Article  Google Scholar 

  104. Tsai WY, Taberna PL, Simon P (2014) Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J Am Chem Soc 136:8722–8728

    Article  Google Scholar 

  105. Forse AC, Merlet C, Griffin JM, Grey CP (2016) New perspectives on the charging mechanisms of supercapacitors. J Am Chem Soc 138:5731–5744

    Article  Google Scholar 

  106. Burt R, Breitsprecher K, Daffos B, Taberna PL, Simon P, Birkett G, Zhao XS, Holm C, Salanne M (2016) Capacitance of nanoporous carbon-based supercapacitors is a trade-off between the concentration and the separability of the ions. J Phys Chem Lett 7:4015–4021

    Article  Google Scholar 

  107. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070

    Article  Google Scholar 

  108. Force AC, Griffin JM, Merlet C, Carretero-Gonzalez J, Raji ARO, Trease NM, Grey CP (2017) Direct observation of ion dynamics in supercapacitor eelectrodes using in-situ diffusion NMR spectroscopy. Nat Energy 2:16216

    Article  Google Scholar 

  109. Tanak A, Iiyama T, Ohba T, Ozeki S, Urita K, Fujimori T, Kanoh H, Kaneko K (2010) Effect of a quaternary ammonium salt on propylene carbonate structure in slit-shape carbon nanopores. J Am Chem Soc 132:2112–2113

    Article  Google Scholar 

  110. Okoshi M, Yamada Y, Yamada S, Nakai H (2013) Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 160:A2160–A2165

    Article  Google Scholar 

  111. Hu L, Guo D, Feng G, Li H, Zahi T (2016) Asymmetric behavior of positive and negative electrodes in carbon/carbon supercapacitors and its underlying mechanism. J Phys Chem C 120:24675–24681

    Article  Google Scholar 

  112. Hyodo S, Okabayashi K (1989) Raman intensity study of local structure in non-aqueous electrolyte solutions-I. cation-solvent interaction in LiClO4/ethylene carbonate. Electrochim Acta 34:1551–1556

    Google Scholar 

  113. Morita M, Asai Y, Yoshimoto N, Ishikawa M (1998) A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J Chem Soc Faraday Trans 94:3451–3456

    Article  Google Scholar 

  114. Yamada Y, Koyama Y, Abe T, Ogumi Z (2009) Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes. J Phys Chem C 113:8948–8953

    Article  Google Scholar 

  115. Miyahara MT, Numaguchi R, Hiratsuka T, Nakai K, Tanaka H (2014) Fluids in nanospaces: molecular simulation studies to find out key mechanisms for engineering. Adsorption 20:213–223

    Article  Google Scholar 

  116. Brunauer S, Emmett PH, Teller D (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  117. Urita K, Urita C, Fujirta K, Horio K, Yoshida M, Moriguchi I (2017) The ideal porous structure of EDLC carbon electrodes with extremely high capacitance. Nanoscale 9:15643–15649

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isamu Moriguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urita, K., Moriguchi, I., Nakashima, N. (2019). Synthesis of Nanoporous Carbon and Their Application to Fuel Cell and Capacitor. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics