Skip to main content

Improve the Performance of Transfer Learning Without Fine-Tuning Using Dissimilarity-Based Multi-view Learning for Breast Cancer Histology Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

Breast cancer is one of the most common types of cancer and leading cancer-related death causes for women. In the context of ICIAR 2018 Grand Challenge on Breast Cancer Histology Images, we compare one handcrafted feature extractor and five transfer learning feature extractors based on deep learning. We find out that the deep learning networks pretrained on ImageNet have better performance than the popular handcrafted features used for breast cancer histology images. The best feature extractor achieves an average accuracy of 79.30%. To improve the classification performance, a random forest dissimilarity based integration method is used to combine different feature groups together. When the five deep learning feature groups are combined, the average accuracy is improved to 82.90% (best accuracy 85.00%). When handcrafted features are combined with the five deep learning feature groups, the average accuracy is improved to 87.10% (best accuracy 93.00%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Cadene/pretrained-models.pytorch.

  2. 2.

    https://github.com/pytorch/vision/tree/master/torchvision.

  3. 3.

    https://download.pytorch.org/models/resnet18-5c106cde.pth.

  4. 4.

    http://data.lip6.fr/cadene/pretrainedmodels/fbresnet152-2e20f6b4.pth.

  5. 5.

    http://data.lip6.fr/cadene/pretrainedmodels/resnext101-64x4d-e77a0586.pth.

  6. 6.

    https://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth.

  7. 7.

    https://download.pytorch.org/models/vgg16-397923af.pth.

  8. 8.

    https://iciar2018-challenge.grand-challenge.org/dataset/.

References

  1. Coroller, T.P., Grossmann, P., Hou, Y., Velazquez, E.R., Leijenaar, R.T., Hermann, G., Lambin, P., Haibe-Kains, B., Mak, R.H., Aerts, H.J.: CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114(3), 345–350 (2015)

    Article  Google Scholar 

  2. Aerts, H., Velazquez, E.R., Leijenaar, R., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  3. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), e0177544 (2017)

    Article  Google Scholar 

  4. Chan, J.K.: The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int. J. Surg. Pathol. 22(1), 12–32 (2014)

    Article  MathSciNet  Google Scholar 

  5. Meyer, J.S., Alvarez, C., Milikowski, C., Olson, N., Russo, I., Russo, J., Glass, A., Zehnbauer, B.A., Lister, K., Parwaresch, R.: Breast carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index. Modern Pathol. 18(8), 1067 (2005)

    Article  Google Scholar 

  6. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

    Google Scholar 

  7. Cao, H., Bernard, S., Heutte, L., Sabourin, R.: Dissimilarity-based representation for radiomics applications. arXiv preprint arXiv:1803.04460 (2018)

  8. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  9. Hamilton, N.A., Pantelic, R.S., Hanson, K., Teasdale, R.D.: Fast automated cell phenotype image classification. BMC Bioinform. 8(1), 110 (2007)

    Article  Google Scholar 

  10. Coelho, L.P.: Mahotas: open source software for scriptable computer vision. J. Open Res. Softw. 1 (2013)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE (2017)

    Google Scholar 

  13. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 (2017)

  14. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  16. Biau, G., Scornet, E.: A random forest guided tour. Test 25(2), 197–227 (2016)

    Article  MathSciNet  Google Scholar 

  17. Bill, J., Fokoué, E.: A comparative analysis of predictive learning algorithms on high-dimensional microarray cancer data. Serdica J. Comput. 8(2), 137–168 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is part of the DAISI project, co-financed by the European Union with the European Regional Development Fund (ERDF) and by the Normandy Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, H., Bernard, S., Heutte, L., Sabourin, R. (2018). Improve the Performance of Transfer Learning Without Fine-Tuning Using Dissimilarity-Based Multi-view Learning for Breast Cancer Histology Images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_88

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics