Skip to main content

Finite Volume Method

  • Chapter
  • First Online:
Multiphysics in Porous Materials

Abstract

One major difference between the finite difference method (FDM) and the finite volume method (FVM) is that the FVM is based on the integral form of the governing equations instead of the differential form. In the FVM, this discretization is conducted over each control volume, which endows FVM with advantages of mass conservation and unstructured meshes. In this chapter, we will first introduce the integral form of the governing equation and show how to formulate this equation into the form for the discretization in the FVM. Then we will discuss the discretization process using a 2D example by including the boundary and initial conditions. Extensions from 2D to multidimensional problems will be made to allow for structured 3D and even more complicated meshes. In the practice problem section, the problem solved in the FDM chapter will be solved again with the FVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abousleiman Y, Cheng A, Cui L, Detournay E, Roegiers J (1996) Mandel’s problem revisited. Geotechnique 46(2):187–195

    Article  Google Scholar 

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Article  CAS  Google Scholar 

  • Allen MB III (1988) Basic mechanics of oil reservoir flows. In: Multiphase flow in porous media. Springer, New York, pp 1–86

    Chapter  Google Scholar 

  • Alshawabkeh AN, Yeung AT, Bricka MR (1999) Practical aspects of in-situ electrokinetic extraction. J Environ Eng 125(1):27–35

    Article  CAS  Google Scholar 

  • Anderson DM, Tice AR, McKim HL (1973) The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp 289–295

    Google Scholar 

  • Balanis CA (1999) Advanced engineering electromagnetics. Wiley, New York

    Google Scholar 

  • Barrett AH, Cardello AV (2012) Military food engineering and ration technology. DEStech Publications, Inc., Lancaster

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  Google Scholar 

  • Biot M, Willis D (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Google Scholar 

  • Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in a Norwegian quick clay. Geotechnique 17(3):214–235

    Article  Google Scholar 

  • Buchner R, Barthel J, Stauber J (1999) The dielectric relaxation of water between 0 C and 35 C. Chem Phys Lett 306(1):57–63

    Article  CAS  Google Scholar 

  • Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117(6):311–314

    Article  Google Scholar 

  • Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems, vol 14. Elsevier, Amsterdam

    Google Scholar 

  • Carcione JM, Morency C, Santos JE (2010) Computational poroelasticity-a review. Geophysics 75:75A229–75A243

    Article  Google Scholar 

  • Cary J (1965) Water flux in moist soil: thermal versus suction gradients. Soil Sci 100:168–175

    Article  Google Scholar 

  • Cary J (1966) Soil moisture transport due to thermal gradients: practical aspects. Soil Sci Soc Am J 30(4):428–433

    Article  Google Scholar 

  • Casagrande IL (1949) Electro-osmosis in soils. Geotechnique 1(3):159–177

    Article  Google Scholar 

  • Casagrande L (1983) Stabilization of soils by means of electro-osmosis: state of the art. J Boston Soc Civil Eng 69(2):255–302

    Google Scholar 

  • Celia MA, Binning P (1992) A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour Res 28(10):2819–2828

    Article  CAS  Google Scholar 

  • Chapli M (2017) Water structure and science

    Google Scholar 

  • Childs EC, Collis-George N (1950) The permeability of porous materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 1066. The Royal Society, pp 392–405

    Article  CAS  Google Scholar 

  • Cho J, Kim K, Chung K, Hyun S, Baek K (2009) Restoration of saline soil in cultivated land using electrokinetic process. Sep Sci Technol 44(10):2371–2384

    Article  CAS  Google Scholar 

  • Chung H, Kang B (1999) Lead removal from contaminated marine clay by electrokinetic soil decontamination. Eng Geol 53(2):139–150

    Article  Google Scholar 

  • COMSOL COMSOL example library. https://www.comsol.com/models/page/2

  • Corwin D, Plant R (2005) Applications of apparent soil electrical conductivity in precision agriculture. Comput Electron Agric 46(1):1–10

    Article  Google Scholar 

  • Courtney M (2015) Multiphysics brings the real world into simulations. E&T Magazine, vol 10

    Google Scholar 

  • Coussy (2004) The atrium, Southern gate, Chichester, West Sussex PO19 8SQ. John Wiley & Sons Ltd, England

    Google Scholar 

  • Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238

    Article  CAS  Google Scholar 

  • Cross M, Slone A (2005) FENet-multi-physics analysis (MPA) theme: a review of commercial MPA capability in 2005. In: Proceedings of the FENet Project Review Meeting, St. Julians, Malta, pp 119–130

    Google Scholar 

  • Cyclopedia M. https://www.comsol.de/multiphysics

  • de Boer R (2000) Contemporary progress in porous media theory. Appl Mech Rev 53(12):323–370

    Article  Google Scholar 

  • De Vries DA (1963) Thermal properties of soils. In: Physics of plant environment. North-Holland Publishing Co., Amsterdam

    Chapter  Google Scholar 

  • Dede EM, Lee J, Nomura T (2014) Multiphysics simulation: electromechanical system applications and optimization. Springer-Verlag, London https://www.springer.com/us/book/9781447156390

    Book  Google Scholar 

  • Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New York

    Google Scholar 

  • Dennis MR, Glendinning P, Martin PA, Santosa F, Tanner J (2015) The Princeton companion to applied mathematics. Princeton University Press, Princeton

    Google Scholar 

  • Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14(6):633–662

    Google Scholar 

  • Detournay E, Cheng A (1993) Fundamental of Poroelasticity, Chapter 5. In: Fairhurst C (ed) Comprehensive rock engineering, vol 2. Pergamon Press, Oxford

    Google Scholar 

  • Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma 223:33–45

    Article  CAS  Google Scholar 

  • Doutres O, Salissou Y, Atalla N, Panneton R (2010) Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl Acoust 71(6):506–509

    Article  Google Scholar 

  • Energy2D web tool. http://energy.concord.org/energy2d/reynolds.html

  • Engineering X (2009) Simulation of a water heater with FLOW-3D

    Google Scholar 

  • Esrig M, Gemeinhardt JP (1900) Electrokinetic stabilization of an illitic clay. J Soil Mech Found Div 92 (SM5, Proc Paper 490)

    Google Scholar 

  • Fernandes A, Pouget J (2003) Analytical and numerical approaches to piezoelectric bimorph. Int J Solids Struct 40(17):4331–4352

    Article  Google Scholar 

  • Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-D mixed finite element model of Biot consolidation. J Comput Phys 229(12):4813–4830

    Article  CAS  Google Scholar 

  • Fischer HB (1966) Longitudinal dispersion in laboratory and natural streams.

    Google Scholar 

  • Fisk M (2008) Simulation of induction heating in manufacturing. Thesis, Luleå Tekniska Universitet

    Google Scholar 

  • Fluke Fluke Thermal Image. https://www.tequipment.net/fluke/thermal-imagers/

  • Franks F (1972) Introduction – water, the unique chemical. In: Franks F (ed) Water a comprehensive treatise, vol 1. Plenum Press, New York, pp 1–20

    Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532

    Article  Google Scholar 

  • Fredlund D, Xing A, Huang S (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(4):533–546

    Article  Google Scholar 

  • Frenkel J (2005) On the theory of seismic and seismoelectric phenomena in a moist soil. J Eng Mech 131(9):879–887

    Article  Google Scholar 

  • Gardner W (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  • Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685

    Article  Google Scholar 

  • Geertsma J (1957) A remark on the analogy between thermoelasticity and the elasticity of saturated porous media. J Mech Phys Solids 6(1):13–16

    Article  Google Scholar 

  • Ghia U, Ghia KN, Shin C (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    Article  Google Scholar 

  • Gibbard J (2013) Open Hand Project Website. http://www.openhandproject.org/

  • Gouy M (1910) Sur la constitution de la charge électrique à la surface d'un électrolyte. Journal de Physique Théorique et Appliquée 9(1):457–468

    Article  CAS  Google Scholar 

  • Gray DH (1970) Electrochemical hardening of clay soils. Geotechnique 20(1):81–93

    Article  CAS  Google Scholar 

  • Groen D, Zasada SJ, Coveney PV (2014) Survey of multiscale and multiphysics applications and communities. Comput Sci Eng 16(2):34–43

    Article  Google Scholar 

  • Hackett RM (2016) Stress measures. In: Hyperelasticity primer. Springer, New York, pp 27–36

    Chapter  Google Scholar 

  • Hansson K, Šimůnek J, Mizoguchi M, Lundin L-C, Van Genuchten MT (2004) Water flow and heat transport in frozen soil. Vadose Zone J 3(2):693–704

    Google Scholar 

  • Harlan R (1973) Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res 9(5):1314–1323

    Article  Google Scholar 

  • Harlow FH, Nakayama PI (1968) Transport of turbulence energy decay rate. Report LA-3854, Los Alamos Scientific Laboratory, New Mexico

    Google Scholar 

  • Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput Mech 43(1):91–101

    Article  Google Scholar 

  • Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction-a review. Commun Comput Phys 12(2):337–377

    Article  Google Scholar 

  • Huang D, Xu Q, Cheng J, Lu X, Zhang H (2012) Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int J Electrochem Sci 7(5):4528–4544

    CAS  Google Scholar 

  • Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic Press, London

    Google Scholar 

  • Huweg AFS (2013) Modelling of electrokinetic phenomena in soils. University of Southern Queensland

    Google Scholar 

  • Irwin N, Botz M, Greenkorn R (1996) Experimental investigation of characteristic length scale in periodic heterogeneous porous media. Transp Porous Media 25(2):235–246

    Article  Google Scholar 

  • Jame YW, Norum DI (1980) Heat and mass transfer in a freezing unsaturated porous medium. Water Resour Res 16(4):811–819

    Article  Google Scholar 

  • Jasak H (2006) Multi-physics simulations in continuum mechanics. In: Proceedings of 5th international conference of croatian society of mechanics, Trogir

    Google Scholar 

  • Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. Thesis, Imperial College

    Google Scholar 

  • Jeong C-H (2011) Guideline for adopting the local reaction assumption for porous absorbers in terms of random incidence absorption coefficients. Acta Acustica united with Acustica 97(5):779–790

    Article  Google Scholar 

  • Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679

    Article  Google Scholar 

  • Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12

    Article  Google Scholar 

  • Kelder O (1997) Frequency-dependent wave propagation in water-saturated porous media. Technische Universiteit Delft, Delft

    Google Scholar 

  • Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83

    Article  Google Scholar 

  • Kim S-O, Kim W-S, Kim K-W (2005) Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ Geochem Health 27(5):443–453

    Article  CAS  Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85

    Article  Google Scholar 

  • Koopmans RWR, Miller R (1966) Soil freezing and soil water characteristic curves. Soil Sci Soc Am J 30(6):680–685

    Article  Google Scholar 

  • Krishna R, Wesselingh J (1997) The Maxwell-Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911

    Article  CAS  Google Scholar 

  • Krzhizhanovskaya VV (2007) Sun S simulation of Multiphysics multiscale systems: introduction to the ICCS’2007 workshop. In: International conference on computational science. Springer, Berlin/Heidelberg, pp 755–761

    Google Scholar 

  • Laboratories BT (1939) Method and apparatus for heating dielectric materials. Google Patents

    Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289

    Article  Google Scholar 

  • Lautrup B (2005) Physics of continuous matter. Exotic and everyday phenomena in the macroscopic world. IOP, Bristol

    Google Scholar 

  • LeVeque RJ (2002) Finite volume methods for hyperbolic problems, vol 31. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotech 6(2):51–65

    Article  Google Scholar 

  • Liu Z, Yu X (2013) Physically based equation for phase composition curve of frozen soils. http://www.liurg.org/documents/Physically%20Based%20Equation%20for%20Phase%20Composition%20Curve%20of%20Frozen%20Soils.pdf

  • Lo K, Ho K, Inculet I (1991) Field test of electroosmotic strengthening of soft sensitive clay. Can Geotech J 28(1):74–83

    Article  Google Scholar 

  • Logan BE (2012) Environmental transport processes. Wiley, New York

    Book  Google Scholar 

  • Luthin JN, Orhun A, Taylor GS (1975) Coupled saturated-unsaturated transient flow in porous media: experimental and numeric model. Water Resour Res 11(6):973–978

    Article  Google Scholar 

  • Mandel J (1953) Consolidation des sols (étude mathématique). Geotechnique 3(7):287–299

    Article  Google Scholar 

  • Manyuhina O, Shklyarevskiy I, Jonkheijm P, Christianen P, Fasolino A, Katsnelson M, Schenning A, Meijer E, Henze O, Kilbinger A (2007) Anharmonic magnetic deformation of self-assembled molecular nanocapsules. Phys Rev Lett 98(14):146101

    Article  CAS  Google Scholar 

  • Marc G, McMillan WG (1985) The virial theorem. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 58. Wiley, Hoboken

    Google Scholar 

  • Massabó M, Cianci R, Paladino O (2011) An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments. J Appl Math 2011:493014

    Article  Google Scholar 

  • Mattson ED, Bowman RS, Lindgren ER (2002) Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing. J Contam Hydrol 54(1):99–120

    Article  CAS  Google Scholar 

  • McInnes K (1981) Thermal Conductivities of Soils from Dryland Wheat Regions of Eastern Washington. MS Thesis, Washington State University

    Google Scholar 

  • Merxhani A (2016) An introduction to linear poroelasticity. arXiv preprint arXiv:160704274

    Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  • Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261

    Article  CAS  Google Scholar 

  • Moin P, Mahesh K (1998) Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech 30(1):539–578

    Article  Google Scholar 

  • Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys Fluids 11(4):943–945

    Article  CAS  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Mualem Y (1986) Hydraulic conductivity of unsaturated soils: prediction and formulas. In: Methods of soil analysis: Part 1-Physical and mineralogical methods. American Society of Agronomy, Soil Science Society of America, Madison, pp 799–823

    Google Scholar 

  • Nepf H (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489

    Article  Google Scholar 

  • Newman GP, Wilson GW (1997) Heat and mass transfer in unsaturated soils during freezing. Can Geotech J 34(1):63–70

    Article  CAS  Google Scholar 

  • Noborio K, McInnes K, Heilman J (1996) Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: II. Field evaluation. Soil Sci Soc Am J 60(4):1010–1021

    Article  CAS  Google Scholar 

  • Noorishad J, Tsang C, Witherspoon P (1992) Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—1. Development and verification of a numerical simulator. Int J Rock Mech Mining Sci Geomech Abstracts 4. Elsevier:401–409

    Article  Google Scholar 

  • Ohm GS (1827) Die galvanische Kette, mathematisch bearbeitet. TH Riemann, Berlin

    Book  Google Scholar 

  • Overbeek JTG, Kruyt H (1952) Colloid science. In: Kruyt HR (ed) Kinetics of flocculation, vol 1. Elsevier, Amsterdam, pp 278–300

    Google Scholar 

  • Pais M (2011), http://www.matthewpais.com/

  • Penta R, Ambrosi D, Shipley R (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67(1):69–91

    Article  Google Scholar 

  • Perrin J (1904) Mécanisme de l'électrisation de contact et solutions colloidales. J Chim Phys 2:601–651

    Article  Google Scholar 

  • Perry JH (1950) Chemical engineers’ handbook. ACS Publications, New York

    Google Scholar 

  • Perry RH, Chilton CH (1973) Chemical engineers’ handbook. McGraw‐Hill, New York

    Google Scholar 

  • Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252

    Article  Google Scholar 

  • Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517

    Article  Google Scholar 

  • Philip J, De Vries D (1957) Moisture movement in porous materials under temperature gradients. EOS Trans Am Geophys Union 38(2):222–232

    Article  Google Scholar 

  • Polyanin (1997), http://www.navier-stokes-equations.com/lecturenotes;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_14636605&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_14636605?id=176396

    Google Scholar 

  • Ponnamperuna FN, Tianco EM, Loy TA (1966) Ionic strengths of soil solutions composition variation with water content for desaturated soils. Soil Sci Soc Am J 35:436–442

    Google Scholar 

  • Qi Y, Zhang TC (2015) Sorption and desorption of testosterone at environmentally relevant levels: effects of aquatic conditions and soil particle size fractions. J Environ Eng 142(1):04015045

    Article  CAS  Google Scholar 

  • Rempel A, Buffett B (1997) Formation and accumulation of gas hydrate in porous media. J Geophys Res Solid Earth 102(B5):10151–10164

    Article  CAS  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  Google Scholar 

  • Righetti PG, Van Oss CJ, Vanderhoff JW (1979) Electrokinetic separation methods. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Roberts PJ, Webster DR (2002) Turbulent diffusion. ASCE Press, Reston

    Google Scholar 

  • Rudnev V, Loveless D, Cook RL (2017) Handbook of induction heating. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rudnick JW (2001) Linear Poroelasticity

    Book  Google Scholar 

  • Ruge JW, Stüben K (1987) Algebraic multigrid. Multigrid Methods 3(13):73–130

    Article  Google Scholar 

  • Rutqvist J, Börgesson L, Chijimatsu M, Kobayashi A, Jing L, Nguyen T, Noorishad J, Tsang C-F (2001) Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. Int J Rock Mech Min Sci 38(1):105–127

    Article  Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer Science & Business Media

    Google Scholar 

  • Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, Hoboken

    Book  Google Scholar 

  • Sawada S (1977) Temperature dependence of thermal conductivity of frozen soil. Memoirs of the Kitami Institute of Technology 9(1):111–122

    Google Scholar 

  • Schanz M, Diebels S (2003) A comparative study of Biot's theory and the linear theory of porous media for wave propagation problems. Acta Mech 161(3):213–235

    Google Scholar 

  • Schmitt FG (2007) About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9–10):617–627

    Article  CAS  Google Scholar 

  • Scott DM, Das DK, Subbaihaannadurai V (2006) A finite element computational method for gas hydrate. Part I: Theory. Petroleum Sci Technol 24(8):895–909

    Article  CAS  Google Scholar 

  • Sharma R (2012) Viscous incompressible flow simulation using penalty finite element method. In: EPJ web of conferences. EDP Sciences, p 01085

    Article  CAS  Google Scholar 

  • Spaans EJ, Baker JM (1996) The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic. Soil Sci Soc Am J 60(1):13–19

    Article  CAS  Google Scholar 

  • Spalart PR (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41:181–202

    Article  Google Scholar 

  • Stephanson O, Jing L, Tsang C-F (1997) Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies, vol 79. Elsevier, Amsterdam https://www.elsevier.com/books/coupled-thermo-hydromechanical-processes-of-fractured-media/stephanson/978-0-444-82545-2

    Google Scholar 

  • Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020

    Google Scholar 

  • Subramaniyan AK, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45(14):4340–4346

    Article  Google Scholar 

  • Sullivan ME (2008) Remediation of arsenic and persistent organic contaminants using enhanced in-situ methods. Colorado State University, Fort Collins

    Google Scholar 

  • Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51(10):940–942

    Article  CAS  Google Scholar 

  • Taber LA (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, Singapore

    Book  Google Scholar 

  • Tamagnini C, Jommi C, Cattaneo F (2010) A model for coupled electro-hydro-mechanical processes in fine grained soils accounting for gas generation and transport. An Acad Bras Cienc 82(1):169–193

    Article  Google Scholar 

  • Terzaghi K (1925) Principles of soil mechanics, IV-settlement and consolidation of clay. Eng News-Record 95(3):874–878

    Google Scholar 

  • Thilmany J (2010) Multiphysics: all at once. Mech Eng 132(2):39

    Article  Google Scholar 

  • Thomas H, He Y (1995) Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique 45(4):677–689

    Article  Google Scholar 

  • Thomas H, He Y (1997) A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation. Int J Numer Methods Eng 40(18):3421–3441

    Article  Google Scholar 

  • Thomas HR, King SD (1991) Coupled temperature/capillary potential variations in unsaturated soil. J Eng Mech 117(11):2475–2491

    Article  Google Scholar 

  • Thomas HR, Cleall PJ, Li Y, Harris C, Kern-Luetschg M (2009) Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique 59(3):173–184

    Article  Google Scholar 

  • Toro EF (2013) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  • Tsai D (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70(3):1375–1382

    Article  CAS  Google Scholar 

  • Van Brakel J, Heertjes P (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transf 17(9):1093–1103

    Article  Google Scholar 

  • van Dalen KN (2013) Multi-component acoustic characterization of porous media. Springer Science & Business Media

    Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  • Verruijt A (1969) In: De Wiest RJM (ed) Elastic storage of aquifers in flow through porous media. Academic Press, New York

    Google Scholar 

  • Verruijt A (2013) Theory and problems of poroelasticity. Delft University of Technology, Delft

    Google Scholar 

  • Verwey E (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51(3):631–636

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289(1):97–121

    Article  CAS  Google Scholar 

  • von Smoluchowski M (1903) Contribution to the theory of electro-osmosis and related phenomena. Bulletin International de l'Académie des Sciences de Cracovie 3:184–199

    Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, Princeton

    Google Scholar 

  • Watanabe K, Flury M (2008) Capillary bundle model of hydraulic conductivity for frozen soil. Water Resour Res 44(12):1–9

    Article  Google Scholar 

  • Water A (1972) In: Franks F (ed) Comprehensive treatise, vol 1982. Plenum, New York, pp 1–7

    Google Scholar 

  • Weinberg S (1977) The search for unity: notes for a history of quantum field theory. Daedalus 2:17–35

    Google Scholar 

  • Wesseling P, Oosterlee CW (2001) Geometric multigrid with applications to computational fluid dynamics. J Comput Appl Math 128(1):311–334

    Article  Google Scholar 

  • Wikipedia Multiphysics. https://en.wikipedia.org/wiki/Multiphysics

  • Wilcox DC (1998) Turbulence modeling for CFD, vol 2. DCW Industries, La Canada

    Google Scholar 

  • Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51

    Article  Google Scholar 

  • Yakhot V, Orszag S, Thangam S, Gatski T, Speziale C (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A Fluid Dynamics 4(7):1510–1520

    Article  CAS  Google Scholar 

  • Yuan J, Hicks M (2013) Large deformation elastic electro-osmosis consolidation of clays. Comput Geotech 54:60–68

    Article  Google Scholar 

  • Zhao C, Yang C (2012) Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13(2):179–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z.(. (2018). Finite Volume Method. In: Multiphysics in Porous Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-93028-2_29

Download citation

Publish with us

Policies and ethics