Skip to main content

Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately

Releasing Optimal Power Flow Benchmarks Privately

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2018)

Abstract

This paper considers the problem of releasing optimal power flow benchmarks that maintain the privacy of customers (loads) using the notion of Differential Privacy. It is motivated by the observation that traditional differential-privacy mechanisms are not accurate enough: The added noise fundamentally changes the nature of the underlying optimization and often leads to test cases with no solution. To remedy this limitation, the paper introduces the framework of Constraint-Based Differential Privacy (CBDP) that leverages the post- processing immunity of differential privacy to improve the accuracy of traditional mechanisms. More precisely, CBDP solves an optimization problem to satisfies the problem-specific constraints by redistributing the noise. The paper shows that CBDP enjoys desirable theoretical properties and produces orders of magnitude improvements on the largest set of test cases available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experimental settings are reported in all details in Sect. 7.

References

  1. Kaggle: Your home for data science. https://www.kaggle.com

  2. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9

    Chapter  Google Scholar 

  3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 901–914. ACM (2013)

    Google Scholar 

  4. Backes, M., Berrang, P., Hecksteden, A., Humbert, M., Keller, A., Meyer, T.: Privacy in epigenetics: temporal linkability of MicroRNA expression profiles. In: USENIX Security Symposium, pp. 1223–1240 (2016)

    Google Scholar 

  5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  6. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theor. Comput. Sci. 9(3–4), 211–407 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a rappor with the unknown: privacy-preserving learning of associations and data dictionaries. Proc. Priv. Enhancing Technol. 2016(3), 41–61 (2016)

    Google Scholar 

  8. Fioretto, F., Lee, C., Van Hentenryck, P.: Constrained-based differential privacy for private mobility. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2018)

    Google Scholar 

  9. Grainger, J.J.S., Grainger, W.D.J.J., Stevenson, W.D.: Power System Analysis. McGraw-Hill Education, New York City (1994)

    Google Scholar 

  10. Greenberg, A.: Apple’s ‘differential privacy’ is about collecting your data—but not your data, 13 June 2016. https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/. Accessed 21 Sept 2016

  11. Gurobi. Gurobi software. http://www.gurobi.com/

  12. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of nonlinear programs in power systems. Math. Program. Comput. 32(5), 3549–3558 (2017)

    MathSciNet  MATH  Google Scholar 

  13. IBM. ILOG CPLEX software. http://www.ibm.com/

  14. Jabr, R.: Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3), 1458–1459 (2006)

    Article  MathSciNet  Google Scholar 

  15. Karapetyan, A., Azman, S.K., Aung, Z.: Assessing the privacy cost in centralized event-based demand response for microgrids. CoRR, abs/1703.02382 (2017)

    Google Scholar 

  16. Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in differential privacy. arXiv preprint arXiv:1504.00065 (2015)

  17. Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is NP-hard. IEEE Trans. Power Syst. 99, 1–4 (2015)

    Google Scholar 

  18. Liao, X., Srinivasan, P., Formby, D., Beyah, A.R.: Di-PriDA: differentially private distributed load balancing control for the smart grid. IEEE Trans. Dependable Secure Comput. (2017). https://doi.org/10.1109/TDSC.2017.2717826

  19. McCormick, G.: Computability of global solutions to factorable nonconvex programs: part i - convex underestimating problems. Math. Program. 10, 146–175 (1976)

    Article  Google Scholar 

  20. Mir, D.J., Isaacman, S., Cáceres, R., Martonosi, M., Wright, R.N.: DP-WHERE: differentially private modeling of human mobility. In: 2013 IEEE International Conference on Big Data, pp. 580–588. IEEE (2013)

    Google Scholar 

  21. MOSEK ApS. The MOSEK optimization toolbox (2015)

    Google Scholar 

  22. Vadhan, S.: The complexity of differential privacy. Tutorials on the Foundations of Cryptography. ISC, pp. 347–450. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_7

    Chapter  Google Scholar 

  23. Verma, A.: Power grid security analysis: an optimization approach. Ph.D. thesis, Columbia University (2009)

    Google Scholar 

  24. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, Hoboken (1996)

    Google Scholar 

  25. Zhao, J., Jung, T., Wang, Y., Li, X.: Achieving differential privacy of data disclosure in the smart grid. In: INFOCOM, 2014 Proceedings, pp. 504–512. IEEE (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments. This research is partly funded by the ARPA-E Grid Data Program under Grant 1357-1530. The views and conclusions contained in this document are those of the authors only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Fioretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fioretto, F., Van Hentenryck, P. (2018). Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics