Skip to main content

Analysis of fMRI Data

  • Chapter
  • First Online:
Modern Psychometrics with R

Part of the book series: Use R! ((USE R))

Abstract

fMRI stands for “functional magnetic resonance imaging” and represents a noninvasive, indirect method for measuring neural activity over time. Such brain scans result in large, complex, and noisy data, which makes data analysis challenging. The first part of the chapter focuses on data preparation and visualization techniques. This is followed by standard univariate linear modeling approaches, for which some effort needs to go into the computation of the expected BOLD signal and the design matrix specification. After fitting the regression models, a huge multiple testing problem arises. A corresponding section focuses on the false discovery rate, Gaussian random fields, and permutation tests including cluster-based thresholding. The last few sections describe specific multivariate methods popular in fMRI: independent component analysis, representational similarity analysis, and connectivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://dx.doi.org/10.7910/DVN/ELLLZM

  2. 2.

    This is certainly not the best way of doing it since ROIs can have irregular (non-spherical) shapes. A better alternative is to import the parcellation boundaries of the ROIs into R, if available, and assign the voxels accordingly.

  3. 3.

    If we are not interested in inference on single subjects, autocorrelation is often ignored, and a simple lm call does the job.

  4. 4.

    The reader can change nruns argument for fitting a different number of runs.

  5. 5.

    A width of 5 led to a reasonable number of clusters in our example. Typically we would use a width of 1 such that we get completely contiguous clusters.

References

  • Achard, S. (2012). brainwaver: Basic wavelet analysis of multivariate time series with a visualisation and parametrisation using graph theory. R package version 1.6. https://CRAN.R-project.org/package=brainwaver

  • Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26, 63–72.

    Article  Google Scholar 

  • Adler, R. J. (1981). The geometry of random fields. New York: Wiley.

    MATH  Google Scholar 

  • Ashby, F. G. (2011). Statistical analysis of fMRI data. Cambridge: The MIT Press.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.

    MathSciNet  MATH  Google Scholar 

  • Bordier, C., Dojat, M., & de Micheaux, P. L. (2011). Temporal and spatial independent component analysis for fMRI data sets embedded in the AnalyzeFMRI R package. Journal of Statistical Software, 44(9), 1–24. http://www.jstatsoft.org/v44/i09/

    Article  Google Scholar 

  • Bretz, F., Hothorn, T., & Westfall, P. (2011). Multiple comparisons using R. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Buchsbaum, B. R. (2016). rMVPA: Multivoxel pattern analysis in R. R package version 0.1.1.

    Google Scholar 

  • Bullmore, E., Fadili, J., Maxim, V., Xendur, L., Whitcher, B., Suckling, J., Brammer, M., & Breakspear, M. (2004) Wavelets and functional magnetic resonance imaging of the human brain. NeuroImage, 23, 234–249.

    Article  Google Scholar 

  • Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage, 45, 163–172.

    Article  Google Scholar 

  • Clayden, J. (2016a). mmand: Mathematical morphology in any number of dimensions. R package version 1.4.1. https://CRAN.R-project.org/package=mmand

  • Clayden, J. (2016b). RNiftyReg: Image registration using the NiftyReg library. R package version 2.4.0. https://CRAN.R-project.org/package=RNiftyReg

  • da Silva, A. F. (2011). cudaBayesreg: Parallel implementation of a Bayesian multilevel model for fMRI data analysis. Journal of Statistical Software, 44(1), 1–24. https://www.jstatsoft.org/index.php/jss/article/view/v044i04

    MathSciNet  Google Scholar 

  • De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R. Journal of Statistical Software, 31(3), 1–30. http://www.jstatsoft.org/v31/i03/

    Article  Google Scholar 

  • De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43, 44–58.

    Article  Google Scholar 

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113, 7900–7905.

    Article  Google Scholar 

  • Eloyan, A., Li, S., Muschelli, J., Pekar, J. J., Mostofsky, S. H., & Caffo, B. S. (2014). Analytic programming with fMRI data: A quick-start guide for statisticians using R. PLoS ONE, 9(2), e89470.

    Article  Google Scholar 

  • Fisher, A. (2016). ggBrain: ggplot brain images. R package version 0.1.

    Google Scholar 

  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2, 56–78.

    Article  Google Scholar 

  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.

    Article  Google Scholar 

  • Gentleman, R., Carey, V., Huber, W., & Hahne, F. (2016). genefilter: Methods for filtering genes from high-throughput experiments. R package version 1.54.2.

    Google Scholar 

  • Hoff, P. (2012). eigenmodel: Semiparametric factor and regression models for symmetric relational data. R package version 1.01. https://CRAN.R-project.org/package=eigenmodel

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363.

    Article  MathSciNet  Google Scholar 

  • Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532, 453–458.

    Article  Google Scholar 

  • Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab: An S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20. http://www.jstatsoft.org/v11/i09/

    Article  Google Scholar 

  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis—Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2(4), 1–28.

    Google Scholar 

  • Lazar, N. A. (2008). The statistical analysis of functional MRI data. New York: Springer.

    MATH  Google Scholar 

  • Madhyastha, T. (2017). neuropointilist: Flexible parallel modeling of neuroimaging data, point by point. R package version 0.0.0.9000. https://github.com/IBIC/neuropointillist

  • Muschelli, J., Sweeney, E., & Crainiceanu, C. (2014). brainR: Interactive 3 and 4D images of high resolution neuroimage data. The R Journal, 6(1), 41–48.

    Google Scholar 

  • Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011). Encoding and decoding in fMRI. NeuroImage, 56, 400–410.

    Article  Google Scholar 

  • Nichols, T. E. (2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 15, 811–815.

    Article  Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15, 1–25.

    Article  Google Scholar 

  • Pollard, K. S., Dudoit, S., & van der Laan, M. J. (2005). Multiple testing procedures: R multtest package and applications to genomics. In R. Gentleman, V. Carey, W. Huber, R. Irizarry, & S. Dudoit (Eds.) Bioinformatics and computational biology solutions using R and bioconductor (pp. 251–272). New York: Springer.

    Google Scholar 

  • Polzehl, J., & Tabelow, K. (2007). fmri: A package for analyzing fmri data. R News, 7(2), 13–17.

    Google Scholar 

  • Reiss, P. T., Huang, L., Chen, Y. H., Huo, L., Tarpey, T., & Mennes, M. (2014). Massively parallel nonparametric regression, with an application to developmental brain mapping. Journal of Computational and Graphical Statistics, 23, 232–248.

    Article  MathSciNet  Google Scholar 

  • Reiss, P. T., Chen, Y. H., Huang, L., Huo, L., Tan, R., & Jiao, R. (2016). vows: Voxelwise Semiparametrics. R package version 0.5. https://CRAN.R-project.org/package=vows

  • Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality research. R package version 1.7.8. http://CRAN.R-project.org/package=psych

  • Roelstraete, B., & Rosseel, Y. (2011). FIAR: An R package for analyzing functional integration in the brain. Journal of Statistical Software, 44(1), 1–32. https://www.jstatsoft.org/index.php/jss/article/view/v044i13

    Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208–219.

    Article  Google Scholar 

  • Tabelow, K., & Polzehl, J. (2011). Statistical parametric maps for functional MRI experiments in R: The package fmri. Journal of Statistical Software, 44(11), 1–21. http://www.jstatsoft.org/v44/i11/

    Article  Google Scholar 

  • Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016a). Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. Proceedings of the National Academy of Sciences of the United States of America, 113, 194–199.

    Article  Google Scholar 

  • Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell JP (2016b). Neural evidence that three dimensions organize mental state representation: rationality, social impact, and valence. Harvard Dataverse, V3. https://doi.org/10.7910/DVN/ELLLZM

  • The FIL Methods Group. (2016). SPM12 manual. Functional Imaging Laboratory, Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London. http://www.fil.ion.ucl.ac.uk/spm/

    Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.

    Book  Google Scholar 

  • Watson, C. G. (2016). brainGraph: Graph theory analysis of brain MRI data. R package version 0.62.0. https://CRAN.R-project.org/package=brainGraph

  • Wen, X., Rangarajan, G., & Ding, M. (2013). Is granger causality a viable technique for analyzing fMRI data? PLoS ONE, 8(7), 1–11.

    Article  Google Scholar 

  • Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 91, 412–419.

    Article  Google Scholar 

  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mair, P. (2018). Analysis of fMRI Data. In: Modern Psychometrics with R. Use R!. Springer, Cham. https://doi.org/10.1007/978-3-319-93177-7_14

Download citation

Publish with us

Policies and ethics