Skip to main content

Asymmetric Cooling and Heating Perception

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10893))

Abstract

A series of experiments have been conducted to evaluate human thermal response to asymmetric thermal stimulation. It has been validated in previous studies that asymmetric thermal stimuli can create perceptions of heating or cooling while maintaining a constant average temperature applied to the skin. In this study we implemented three experimental procedures on the ventral forearm to evaluate asymmetric thermal stimulation. These experiments also examined several ways to collect perceptual thermal responses from subjects. Constant and asymmetric thermal pattern average temperatures were adjusted based on multiple aspects of thermal perception theories. Temporally optimized thermal patterns were implemented and resulted in counter-intuitive thermal perceptions. These results also demonstrated that the perceptual neutral point differs from the thermally neutral point on the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manasrah, A., Crane, N., Guldiken, R., Reed, K.B.: Perceived cooling using asymmetrically-applied hot and cold stimuli. IEEE Trans. Haptics 10(1), 75–83 (2017)

    Article  Google Scholar 

  2. Manasrah, A., Crane, N., Guldiken, R., Reed, K.B.: Asymmetrically-applied hot and cold stimuli gives perception of constant heat. In: World Haptics Conference (WHC), 2017 IEEE, pp. 484–489. IEEE (2017)

    Google Scholar 

  3. Singhal, A., Jones, L.A.: Perceptual interactions in thermo-tactile displays. In: World Haptics Conference (WHC), 2017 IEEE, pp. 90–95. IEEE (2017)

    Google Scholar 

  4. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J., et al.: Principles of Neural Science, vol. 4. McGraw-hill, New York (2000)

    Google Scholar 

  5. Jones, L.A., Berris, M.: The psychophysics of temperature perception and thermal-interface design. In: 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 137–142. IEEE (2002)

    Google Scholar 

  6. Stevens, J.C.: Thermal Sensibility. In: The psychology of touch, pp. 61–90 (1991)

    Google Scholar 

  7. Parsons, K.: Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  8. Green, B.G.: Temperature perception and nociception. Dev. Neurobiol. 61(1), 13–29 (2004)

    Article  Google Scholar 

  9. Jones, L.A., Ho, H.-N.: Warm or cool, large or small? the challenge of thermal displays. IEEE Trans. Haptics 1(1), 53–70 (2008)

    Article  Google Scholar 

  10. Yarnitsky, D., Ochoa, J.L.: Warm and cold specific somatosensory systems: psychophysical thresholds, reaction times and peripheral conduction velocities. Brain 114(4), 1819–1826 (1991)

    Article  Google Scholar 

  11. Molinari, H.H., Greenspan, J.D., Kenshalo, D.R.: The effects of rate of temperature change and adapting temperature on thermal sensitivity. Sens. Process. 1(4), 354–362 (1977)

    Google Scholar 

  12. Stevens, J.C., Green, B.G.: Temperature-touch interaction: Weber’s phenomenon revisited. Sens. Process. 2, 206–209 (1978)

    Google Scholar 

  13. Caldwell, D.G., Tsagarakis, N., Wardle, A.: Mechano thermo and proprioceptor feedback for integrated haptic feedback. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2491–2496. IEEE (1997)

    Google Scholar 

  14. Kammermeier, P., Kron, A., Hoogen, J., Schmidt, G.: Display of holistic haptic sensations by combined tactile and kinesthetic feedback. Presence: Teleoperators Virtual Environ. 13(1), 1–15 (2004)

    Article  Google Scholar 

  15. Gallo, S., Cucu, L., Thevenaz, N., Sengul, A., Bleuler, H.: Design and control of a novel thermo-tactile multimodal display. In: Haptics Symposium (HAPTICS), 2014 IEEE, pp. 75–81. IEEE (2014)

    Google Scholar 

  16. Ho, H., Jones, L.A.: Material identification using real and simulated thermal cues. In: 26th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, 2004. IEMBS 2004, vol. 1, pp. 2462–2465. IEEE (2004)

    Google Scholar 

  17. Peiris, R.L., Chan, L., Minamizawa, K.: Thermocons: evaluating the thermal haptic perception of the forehead. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 187–188. ACM (2016)

    Google Scholar 

  18. Peiris, R.L., Peng, W., Chen, Z., Chan, L., Minamizawa, K.: Thermovr: exploring integrated thermal haptic feedback with head mounted displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5452–5456. ACM (2017)

    Google Scholar 

  19. Peiris, R.L., Peng, W., Chen, Z., Minamizawa, K.: Exploration of cuing methods for localization of spatial cues using thermal haptic feedback on the forehead. In: World Haptics Conference, pp. 400–405. IEEE (2017)

    Google Scholar 

  20. Stevens, J.C., Marks, L.E.: Spatial summation and the dynamics of warmth sensation. Attent. Percept. Psychophys. 9(5), 391–398 (1971)

    Article  Google Scholar 

  21. Alrutz, S.: On the temperature-senses. Mind 7(25), 141–144 (1898)

    Article  Google Scholar 

  22. Craig, A.D., Bushnell, M.C.: The thermal grill illusion: unmasking the burn of cold pain. Science 265(5169), 252–256 (1994)

    Article  Google Scholar 

  23. Amemiya, T., Ando, H., Maeda, T.: Virtual force display: direction guidance using asymmetric acceleration via periodic translational motion. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 619–622. IEEE (2005)

    Google Scholar 

  24. Kenshalo, D.R., Holmes, C.E., Wood, P.B.: Warm and cool thresholds as a function of rate of stimulus temperature change. Atten. Percept. Psychophys. 3(2), 81–84 (1968)

    Article  Google Scholar 

  25. McFarland, R.A.: Relationship of skin temperature changes to the emotions accompanying music. Appl. Psychophysiol. Biofeedback 10(3), 255–267 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hojatmadani, M., Reed, K. (2018). Asymmetric Cooling and Heating Perception. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10893. Springer, Cham. https://doi.org/10.1007/978-3-319-93445-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93445-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93444-0

  • Online ISBN: 978-3-319-93445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics