Skip to main content

Developing a Multiple-Objective Demand Response Algorithm for the Residential Context

  • Conference paper
  • First Online:
Business Information Systems (BIS 2018)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 320))

Included in the following conference series:

  • 2839 Accesses

Abstract

Energy grids are facing various challenges, such as new appliances and volatile generation. As grid reliability and cost benefits are endangered, managing appliances becomes increasingly important. Demand Response (DR) is one possibility to contribute to this task by shifting and managing electrical loads. DR can address multiple objectives. However, current research lacks of algorithms addressing these objectives sufficiently. Thus, we aim to develop a DR algorithm that considers multiple DR objectives. For evaluation, we implemented the algorithm and formulated demonstration cases for a simulation. The evaluated algorithm contributes for example to users and energy providers by realizing various benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence, T.M., Watson, R.T., Boudreau, M.-C., Mohammadpour, J.: Data flow requirements for integrating smart buildings and a smart grid through model predictive control. Procedia Eng. 180, 1402–1412 (2017)

    Article  Google Scholar 

  2. Seidel, S., Recker, J., vom Brocke, J.: Sensemaking and sustainable practicing: functional affordances of information systems in green transformations. Manag. Inf. Syst. Q. 37, 1275–1299 (2013)

    Article  Google Scholar 

  3. Siano, P.: Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  4. Hu, Q., Li, F.: Hardware design of smart home energy management system with dynamic price response. IEEE Trans. Smart Grid. 4, 1878–1887 (2013)

    Article  Google Scholar 

  5. Jovanovic, R., Bousselham, A., Bayram, I.S.: Residential demand response scheduling with consideration of consumer preferences. Appl. Sci. 6, (2016)

    Article  Google Scholar 

  6. Koolen, D., Sadat-Razavi, N., Ketter, W.: Machine learning for identifying demand patterns of home energy management systems with dynamic electricity pricing. Appl. Sci. 7, 1160 (2017)

    Article  Google Scholar 

  7. Kosek, A.M., Costanzo, G.T., Bindner, H.W., Gehrke, O.: An overview of demand side management control schemes for buildings in smart grids. In: 2013 IEEE International Conference on Smart Energy Grid Engineering. SEGE (2013)

    Google Scholar 

  8. Merkert, L., Harjunkoski, I., Isaksson, A., Säynevirta, S., Saarela, A., Sand, G.: Scheduling and energy – industrial challenges and opportunities. Comput. Chem. Eng. 72, 183–198 (2015)

    Article  Google Scholar 

  9. Steen, D., Le, T., Bertling, L.: Price-based demand-side management for reducing peak demand in electrical distribution systems – with examples from gothenburg. Chalmers Publication Library (CPL) (2012)

    Google Scholar 

  10. Hillemacher, L.: Lastmanagement mittels dynamischer Strompreissignale bei Haushaltskunden. (2014)

    Google Scholar 

  11. Vidal, A.R.S., Jacobs, L.A.A., Batista, L.S.: An evolutionary approach for the demand side management optimization in smart grid. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–7 (2014)

    Google Scholar 

  12. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid. 4, 341–348 (2013)

    Article  Google Scholar 

  13. Behrens, D., Schoormann, T., Knackstedt, R.: Developing an algorithm to consider multiple demand response objectives. Eng. Technol. Appl. Sci. Res. (2018)

    Google Scholar 

  14. Al-Sumaiti, A.S., Ahmed, M.H., Salama, M.M.A.: Smart home activities: a literature review. Electr. Power Compon. Syst. 42, 294–305 (2014)

    Article  Google Scholar 

  15. Balijepalli, V.S.K.M., Pradhan, V., Khaparde, S.A., Shereef, R.M.: Review of demand response under smart grid paradigm. In: ISGT2011-India, pp. 236–243 (2011)

    Google Scholar 

  16. Gerwig, C., Behrens, D., Lessing, H., Knackstedt, R.: Demand side management in residential contexts - a literature review. In: Lecture Notes in Informatics, pp. 93–107 (2015)

    Google Scholar 

  17. Ketter, W., Collins, J., Reddy, P.P., Flath, C.M.: The Power Trading Agent Competition. Social Science Research Network, Rochester (2011)

    Google Scholar 

  18. Ali, S.Q., Maqbool, S.D., Ahamed, T.P.I., Malik, N.H.: Pursuit algorithm for optimized load scheduling. In: 2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia, pp. 193–198 (2012)

    Google Scholar 

  19. Keerthisinghe, C., Verbič, G., Chapman, A.C.: Evaluation of a multi-stage stochastic optimisation framework for energy management of residential PV-storage systems. In: 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–6 (2014)

    Google Scholar 

  20. Zhao, W., Cooper, P., Perez, P., Ding, L.: Cost-driven residential energy management for adaption of smart grid and local power generation (2014)

    Google Scholar 

  21. Huang, Y., Mao, S., Nelms, R.M.: Smooth electric power scheduling in power distribution networks. In: 2012 IEEE Globecom Workshops, pp. 1469–1473 (2012)

    Google Scholar 

  22. McNamara, P., McLoone, S.: Hierarchical demand response for peak minimization using dantzig–wolfe decomposition. IEEE Trans. Smart Grid. 6, 2807–2815 (2015)

    Article  Google Scholar 

  23. Verschae, R., Kawashima, H., Kato, T., Matsuyama, T.: A distributed coordination framework for on-line scheduling and power demand balancing of households communities. In: 2014 European Control Conference (ECC), pp. 1655–1662 (2014)

    Google Scholar 

  24. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q., Wang, D.: Optimal task and energy scheduling in dynamic residential scenarios. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012. LNCS, vol. 7367, pp. 650–658. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31346-2_73

    Chapter  Google Scholar 

  25. Bassamzadeh, N., Ghanem, R., Kazemitabar, S.J.: Robust scheduling of smart appliances with uncertain electricity prices in a heterogeneous population. Entergy Build. 84 (2014)

    Article  Google Scholar 

  26. Kim, S.-J., Giannakis, G.B.: Efficient and scalable demand response for the smart power grid. In: 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 109–112 (2011)

    Google Scholar 

  27. Song, L., Xiao, Y., van der Schaar, M.: Non-stationary demand side management method for smart grids. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7759–7763 (2014)

    Google Scholar 

  28. Berkeley Lab: Distributed Energy Resources Customer Adoption Model (DER-CAM) | Building Microgrid. https://building-microgrid.lbl.gov/projects/der-cam

  29. Batchu, R., Pindoriya, Naran M.: Residential demand response algorithms: state-of-the-art, key issues and challenges. In: Pillai, P., Hu, Y.F., Otung, I., Giambene, G. (eds.) WiSATS 2015. LNICST, vol. 154, pp. 18–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25479-1_2

    Chapter  Google Scholar 

  30. Cortés-Arcos, T., Bernal-Agustín, J.L., Dufo-López, R., Lujano-Rojas, J.M., Contreras, J.: Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology. Energy 138, 19–31 (2017)

    Article  Google Scholar 

  31. Behrens, D., Schoormann, T., Knackstedt, R.: Towards a taxonomy of constraints in demand-side-management-methods for a residential context. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 283–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_20

    Chapter  Google Scholar 

  32. Behrens, D., Ruether, C., Schoormann, T., Ambrosi, K., Knackstedt, R.: Effects of constraints in resdential demand-side-management algorithms - a simulation-based study. In: International Conference on Operation Research. Springer, Berlin (2017)

    Google Scholar 

  33. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. Manag. Inf. Syst. Q. 28, 75–105 (2004)

    Article  Google Scholar 

  34. Sanders, P.: Algorithm engineering – an attempt at a definition. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 321–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_22

    Chapter  Google Scholar 

  35. Ketter, W., Peters, M., Collins, J., Gupta, A.: competitive benchmarking: an is research approach to address wicked problems with big data and analytics. Manag. Inf. Syst. Q. 40, 1057–1080 (2016)

    Article  Google Scholar 

  36. Füller, K., Ramanath, R., Böhm, M., Krcmar, H.: Decision support for the selection of appropriate customer integration methods. Wirtsch. Proc. 2015 (2015)

    Google Scholar 

  37. Nieße, A., Tröschel, M., Sonnenschein, M.: Designing dependable and sustainable smart grids – how to apply algorithm engineering to distributed control in power systems. Environ. Model Softw. 56, 37–51 (2014)

    Article  Google Scholar 

  38. Mohsenian-Rad, A.-H., Wong, V.W., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid. 1, 320–331 (2010)

    Article  Google Scholar 

  39. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  40. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520 (1960)

    Article  MathSciNet  Google Scholar 

  41. Monacchi, A., Egarter, D., Elmenreich, W., D’Alessandro, S., Tonello, A.M.: GREEND: an energy consumption dataset of households in Italy and Austria. ArXiv14053100 (2014)

    Google Scholar 

  42. Behrens, D., Schoormann, T., Knackstedt, R.: Datensets für Demand-Side-Management – Literatur-Review-Basierte Analyse und Forschungsagenda. In: Mayr, H.C., Pinzger, M. (eds.) Lecture Notes in Informatics (2016)

    Google Scholar 

  43. Cao, H.Â., Beckel, C., Staake, T.: Are domestic load profiles stable over time? An attempt to identify target households for demand side management campaigns. In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4733–4738 (2013)

    Google Scholar 

  44. Hoogsteen, G., Molderink, A., Hurink, J.L., Smit, G.J.M.: Generation of flexible domestic load profiles to evaluate demand side management approaches. In: 2016 IEEE International Energy Conference (ENERGYCON), pp. 1–6 (2016)

    Google Scholar 

  45. Noah Pflugradt: LoadProfileGenerator. http://www.loadprofilegenerator.de/

  46. Behrens, D., Gerwig, C., Knackstedt, R., Lessing, H.: Selbstregulierende Verbraucher im Smart Grid: Design einere Infrastruktur mit Hilfe eines Multi-Agenten-Systems. In: Proceedings of the Multikonferenz Wirtschaftsinformatik 2014 (2014)

    Google Scholar 

  47. Miao, H., Huang, X., Chen, G.: A genetic evolutionary task scheduling method for energy efficiency in smart homes. Int. Rev. Electr. Eng. 7, 5897–5904 (2012)

    Google Scholar 

  48. Soliman, H.M., Leon-Garcia, A.: Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Trans. Smart Grid. 5, 1475–1485 (2014)

    Article  Google Scholar 

  49. Alam, M.R., St-Hilaire, M., Kunz, T.: Cost optimization via rescheduling in smart grids—a linear programming approach. In: 2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE), pp. 1–6 (2013)

    Google Scholar 

  50. Maqbool, S.D., Ahamed, T.P.I., Ali, S.Q., Pazheri, F.R., Malik, N.H.: Comparison of pursuit and ε-greedy algorithm for load scheduling under real time pricing. In: 2012 IEEE International Conference on Power and Energy (PECon), pp. 515–519 (2012)

    Google Scholar 

  51. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Behrens, D., Schoormann, T., Knackstedt, R. (2018). Developing a Multiple-Objective Demand Response Algorithm for the Residential Context. In: Abramowicz, W., Paschke, A. (eds) Business Information Systems. BIS 2018. Lecture Notes in Business Information Processing, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-93931-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93931-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93930-8

  • Online ISBN: 978-3-319-93931-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics