Skip to main content

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

We present a formalization of the first half of Bachmair and Ganzinger’s chapter on resolution theorem proving in Isabelle/HOL, culminating with a refutationally complete first-order prover based on ordered resolution with literal selection. We develop general infrastructure and methodology that can form the basis of completeness proofs for related calculi, including superposition. Our work clarifies several of the fine points in the chapter’s text, emphasizing the value of formal proofs in the field of automated reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/isafol/isafol/wiki/Home

  2. 2.

    https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html

References

  1. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Rewriting Techniques-Resolution of Equations in Algebraic Structures, vol. 2, pp. 1–30. Academic Press (1989)

    Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99. Elsevier and MIT Press (2001)

    Chapter  Google Scholar 

  4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153 (2014)

    Article  MathSciNet  Google Scholar 

  5. Biendarra, J., et al.: Foundational (co)datatypes and (co)recursion for higher-order logic. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_1

    Chapter  Google Scholar 

  6. Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver framework with learn, forget, restart, and incrementality. J. Autom. Reason. 61(3), 333–366

    Article  MathSciNet  Google Scholar 

  7. Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and syntactic ordinals in Isabelle/HOL. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 11:1–11:18. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  8. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formal. Reason. 9(1), 101–148 (2016)

    MathSciNet  Google Scholar 

  9. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)

    Article  MathSciNet  Google Scholar 

  10. Brand, D.: Proving theorems with the modifiction method. SIAM J. Comput. 4(4), 412–430 (1975)

    Article  MathSciNet  Google Scholar 

  11. Cruanes, S.: Logtk: a logic toolkit for automated reasoning and its implementation. In: Schulz, S., de Moura, L., Konev, B. (eds.) PAAR-2014. EPiC Series in Computing, vol. 31, pp. 39–49. EasyChair (2014)

    Google Scholar 

  12. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched literals using Imperative HOL. In: Andronick, J., Felty, A.P. (eds.) CPP 2018, pp. 158–171. ACM (2018)

    Google Scholar 

  13. Hirokawa, N., Middeldorp, A., Sternagel, C., Winkler, S.: Infinite runs in abstract completion. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 19:1–19:16. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  14. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)

    Chapter  Google Scholar 

  15. Nipkow, T.: Teaching Semantics with a proof assistant: no more LSD trip proofs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_3

    Chapter  Google Scholar 

  16. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  17. Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs 2016 (2016). https://www.isa-afp.org/entries/SuperCalc.shtml

  18. Persson, H.: Constructive Completeness of Intuitionistic Predicate Logic—a Formalisation in Type Theory. Licentiate thesis, Chalmers tekniska högskola and Göteborgs universitet (1996)

    Google Scholar 

  19. Pierce, B.C.: Lambda, the ultimate TA: using a proof assistant to teach programming language foundations. In: Hutton, G., Tolmach, A.P. (eds.) ICFP 2009, pp. 121–122. ACM (2009)

    Google Scholar 

  20. Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. J. Autom. Reason 61(4), 455–484

    Article  MathSciNet  Google Scholar 

  21. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s ordered resolution prover (technical report). Technical report (2018). http://matryoshka.gforge.inria.fr/pubs/rp_report.pdf

  22. Shankar, N.: Towards mechanical metamathematics. J. Autom. Reason. 1(4), 407–434 (1985)

    Article  MathSciNet  Google Scholar 

  23. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_31

    Chapter  Google Scholar 

  24. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_46

    Chapter  Google Scholar 

  25. Wand, D.: Polymorphic \(+\) typeclass superposition. In: Schulz, S., de Moura, L., Konev, B. (eds.) PAAR-2014. EPiC Series in Computing, vol. 31, pp. 105–119. EasyChair (2014)

    Google Scholar 

  26. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1965–2013. Elsevier and MIT Press (2001)

    Chapter  Google Scholar 

  27. Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10, no. 23, University of Białystok (2007)

    Google Scholar 

  28. Wenzel, M.: Isabelle/jEdit—a prover IDE within the PIDE framework. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_38

    Chapter  Google Scholar 

  29. Zhang, H., Kapur, D.: First-order theorem proving using conditional rewrite rules. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0012820

    Chapter  Google Scholar 

Download references

Acknowledgment

Christoph Weidenbach discussed Bachmair and Ganzinger’s chapter with us on many occasions and hosted Schlichtkrull at the Max-Planck-Institut in Saarbrücken. Christian Sternagel and René Thiemann answered our questions about IsaFoR. Mathias Fleury, Florian Haftmann, and Tobias Nipkow helped enrich and reorganize Isabelle’s multiset library. Mathias Fleury, Robert Lewis, Mark Summerfield, Sophie Tourret, and the anonymous reviewers suggested many textual improvements.

Blanchette was partly supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening the Hammer (grant NI 491/14-1). He also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Traytel was partly supported by the DFG program Program and Model Analysis (PUMA, doctorate program 1480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Schlichtkrull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U. (2018). Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics