Skip to main content

Gravitational Waves and the Cosmic Neutrino Background

  • Chapter
  • First Online:
Cosmological Implications of Quantum Anomalies

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The Cosmic Neutrino Background (C\( \nu \)B) contains information from very early times which may help illuminate both the properties of the neutrino sector and the evolution of the universe. Unfortunately, the weakly interacting nature of neutrinos combined with the low temperature of the background today, makes the prospect for detection near impossible in the foreseeable future. Despite this, the dynamics of the C\( \nu \)B could have had significant effects on the evolution of the early universe. The prospect of gleaning indirect evidence of the C\( \nu \)B is to be explored in this chapter, through considering the possible implications for gravitational wave propagation. Given the dawn of the new era of gravitational wave astronomy, this is an exciting possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.D. Barrie, A. Kobakhidze, Gravitational instabilities of the cosmic neutrino background with non-zero lepton number. Phys. Lett. B 772, 459–463 (2017). https://doi.org/10.1016/j.physletb.2017.07.012

  2. J. Lesgourgues, S. Pastor, Cosmological implications of a relic neutrino asymmetry. Phys. Rev. D 60, 103521 (1999). https://doi.org/10.1103/PhysRevD.60.103521

  3. N.F. Bell, R.R. Volkas, Y.Y.Y. Wong, Relic neutrino asymmetry evolution from first principles. Phys. Rev. D 59, 113001 (1999). https://doi.org/10.1103/PhysRevD.59.113001

  4. R.R. Volkas, Y.Y.Y. Wong, Further studies on relic neutrino asymmetry generation. 1. The adiabatic Boltzmann limit, nonadiabatic evolution, and the classical harmonic oscillator analog of the quantum kinetic equations. Phys. Rev. D 62, 093024 (2000). https://doi.org/10.1103/PhysRevD.62.093024

  5. K.S.M. Lee, R.R. Volkas, Y.Y.Y. Wong, Further studies on relic neutrino asymmetry generation. 2. A Rigorous treatment of repopulation in the adiabatic limit. Phys. Rev. D 62, 093025 (2000). https://doi.org/10.1103/PhysRevD.62.093025

  6. J. March-Russell, H. Murayama, A. Riotto, The small observed baryon asymmetry from a large lepton asymmetry. JHEP 11, 015 (1999). https://doi.org/10.1088/1126-6708/1999/11/015

  7. J. McDonald, Naturally large cosmological neutrino asymmetries in the MSSM. Phys. Rev. Lett. 84, 4798–4801 (2000). https://doi.org/10.1103/PhysRevLett. 84.4798

  8. D.J. Schwarz, M. Stuke, Lepton asymmetry and the cosmic QCD transition. JCAP 0911, 025 (2009). https://doi.org/10.1088/1475-7516/2009/11/025,10.1088/1475-7516/2010/10/E01. [Erratum: JCAP1010, E01(2010)]

  9. V.B. Semikoz, D.D. Sokoloff, J.W.F. Valle, Is the baryon asymmetry of the universe related to galactic magnetic fields? Phys. Rev. D 80, 083510 (2009). https://doi.org/10.1103/PhysRevD.80.083510

  10. G. Barenboim, W.I. Park, A full picture of large lepton number asymmetries of the universe. JCAP 1704(04), 048 (2017). https://doi.org/10.1088/1475-7516/2017/04/048

  11. A. Yahil, G. Beaudet, Big-bang nucleosynthesis with nonzero lepton numbers. Astrophys. J. 206, 26–29 (1976). https://doi.org/10.1086/154352

  12. N. Terasawa, K. Sato, Constraints on baryon and lepton number asymmetries of the early universe from primordial nucleosynthesis. Prog. Theor. Phys. 72, 1262–1265 (1984). https://doi.org/10.1143/PTP.72.1262

  13. N. Terasawa, K. Sato, Lepton and baryon number asymmetry of the universe and primordial nucleosynthesis. Prog. Theor. Phys. 80, 468 (1988). https://doi.org/10.1143/PTP.80.468

  14. K. Kohri, M. Kawasaki, K. Sato, Big bang nucleosynthesis and lepton number asymmetry in the universe. Astrophys. J. 490, 72–75 (1997). https://doi.org/10.1086/512793

  15. W.H. Kinney, A. Riotto, Measuring the cosmological lepton asymmetry through the CMB anisotropy. Phys. Rev. Lett. 83, 3366–3369 (1999). https://doi.org/10.1103/PhysRevLett.83.3366

  16. S. Pastor, J. Lesgourgues, Relic neutrino asymmetry, CMB and large scale structure. Nucl. Phys. Proc. Suppl. 81, 47–51 (2000). https://doi.org/10.1016/S0920-5632(99)00857-9

  17. J. Lesgourgues, S. Pastor, S. Prunet, Cosmological measurement of neutrino mass in the presence of leptonic asymmetry. Phys. Rev. D 62, 023001 (2000). https://doi.org/10.1103/PhysRevD.62.023001

  18. J. Lesgourgues, M. Peloso, Remarks on the Boomerang results, the baryon density, and the leptonic asymmetry. Phys. Rev. D 62, 081301 (2000). https://doi.org/10.1103/PhysRevD.62.081301

  19. J. Lesgourgues, A.R. Liddle, The lepton asymmetry: the last chance for a critical-density cosmology? Mon. Not. Roy. Astron. Soc. 327, 1307 (2001). https://doi.org/10.1046/j.1365-8711.2001.04833.x

  20. V. Simha, G. Steigman, Constraining the universal lepton asymmetry. JCAP 0808, 011 (2008). https://doi.org/10.1088/1475-7516/2008/08/011

  21. G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, Constraining the cosmic radiation density due to lepton number with big bang nucleosynthesis. JCAP 1103, 035 (2011). https://doi.org/10.1088/1475-7516/2011/03/035

  22. G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, Updated BBN bounds on the cosmological lepton asymmetry for non-zero \(\theta_{13}\). Phys. Lett. B 708, 1–5 (2012). https://doi.org/10.1016/j.physletb.2012.01.015

  23. E. Castorina, U. Franca, M. Lattanzi, J. Lesgourgues, G. Mangano, A. Melchiorri, S. Pastor, Cosmological lepton asymmetry with a nonzero mixing angle \(\theta_{13}\). Phys. Rev. D 86, 023517 (2012). https://doi.org/10.1103/PhysRevD.86.023517

  24. I.M. Oldengott, D.J. Schwarz, Improved constraints on lepton asymmetry from the cosmic microwave background. EPL 119(2), 29001 (2017). https://doi.org/10.1209/0295-5075/119/29001

  25. A.D. Dolgov, S.H. Hansen, S. Pastor, S.T. Petcov, G.G. Raffelt, D.V. Semikoz, Cosmological bounds on neutrino degeneracy improved by flavor oscillations. Nucl. Phys. B 632, 363–382 (2002). https://doi.org/10.1016/S0550-3213(02)00274-2

  26. Y.Y.Y. Wong, Analytical treatment of neutrino asymmetry equilibration from flavor oscillations in the early universe. Phys. Rev. D 66, 025015 (2002). https://doi.org/10.1103/PhysRevD.66.025015

  27. K.N. Abazajian, J.F. Beacom, N.F. Bell, Stringent constraints on cosmological neutrino anti-neutrino asymmetries from synchronized flavor transformation. Phys. Rev. D 66, 013008 (2002). https://doi.org/10.1103/PhysRevD.66.013008

  28. G. Barenboim, W.H. Kinney, W.I. Park, Resurrection of large lepton number asymmetries from neutrino flavor oscillations. Phys. Rev. D 95(4), 043506 (2017). https://doi.org/10.1103/PhysRevD.95.043506

  29. J.A. Harvey, E.W. Kolb, Grand unified theories and the lepton number of the universe. Phys. Rev. D 24, 2090 (1981). https://doi.org/10.1103/PhysRevD.24.2090

  30. P. Langacker, G. Segre, S. Soni, Majorana neutrinos, nucleosynthesis, and the lepton asymmetry of the universe. Phys. Rev. D 26, 3425 (1982). https://doi.org/10.1103/PhysRevD.26.3425

  31. B.A. Campbell, S. Davidson, J.R. Ellis, K.A. Olive, On the baryon, lepton flavor and right-handed electron asymmetries of the universe. Phys. Lett. B 297, 118–124 (1992). https://doi.org/10.1016/0370-2693(92)91079-O

  32. J. Liu, G. Segre, Baryon asymmetry of the universe and large lepton asymmetries. Phys. Lett. B 338, 259–262 (1994). https://doi.org/10.1016/0370-2693(94)91375-7

  33. R. Foot, M.J. Thomson, R.R. Volkas, Large neutrino asymmetries from neutrino oscillations. Phys. Rev. D 53, R5349–R5353 (1996). https://doi.org/10.1103/PhysRevD.53.R5349

  34. R. Foot, R.R. Volkas, Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds. Phys. Rev. D 55, 5147–5176 (1997). https://doi.org/10.1103/PhysRevD.55.5147

  35. A. Casas, W.Y. Cheng, G. Gelmini, Generation of large lepton asymmetries. Nucl. Phys. B538, 297–308 (1999). https://doi.org/10.1016/S0550-3213(98)00606-3

  36. B. Bajc, A. Riotto, G. Senjanovic, Large lepton number of the universe and the fate of topological defects. Phys. Rev. Lett. 81, 1355–1358 (1998). https://doi.org/10.1103/PhysRevLett. 81.1355

  37. A.D. Dolgov, S.H. Hansen, S. Pastor, D.V. Semikoz, Neutrino oscillations in the early universe: how large lepton asymmetry can be generated? Astropart. Phys. 14, 79–90 (2000). https://doi.org/10.1016/S0927-6505(00)00111-0

  38. A. Sorri, Physical origin of ’chaoticity’ of neutrino asymmetry. Phys. Lett. B 477, 201–207 (2000). https://doi.org/10.1016/S0370-2693(00)00203-3

  39. R. Buras, D.V. Semikoz, Lepton asymmetry creation in the early universe. Astropart. Phys. 17, 245–261 (2002). https://doi.org/10.1016/S0927-6505(01)00155-4

    Article  ADS  Google Scholar 

  40. R. Buras, D.V. Semikoz, Maximum lepton asymmetry from active sterile neutrino oscillations in the early universe. Phys. Rev. D 64, 017302 (2001). https://doi.org/10.1103/PhysRevD.64.017302

    Article  ADS  Google Scholar 

  41. K. Kainulainen, A. Sorri, Oscillation induced neutrino asymmetry growth in the early universe. JHEP 02, 020 (2002). https://doi.org/10.1088/1126-6708/2002/02/020

  42. M. Yamaguchi, Generation of cosmological large lepton asymmetry from a rolling scalar field. Phys. Rev. D 68, 063507 (2003). https://doi.org/10.1103/PhysRevD.68.063507

  43. L. Bento, F.C. Santos, Neutrino helicity asymmetries in leptogenesis. Phys. Rev. D 71, 096001 (2005). https://doi.org/10.1103/PhysRevD.71.096001

  44. J. Aasi et al., Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001

  45. B.P. Abbott et al., Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X6(4), 041015 (2016). https://doi.org/10.1103/PhysRevX.6.041015

    Article  Google Scholar 

  46. B.P. Abbott et al., The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophys. J. 833(1), L1 (2016). https://doi.org/10.3847/2041-8205/833/1/L1

    Article  ADS  Google Scholar 

  47. A. Lue, L.M. Wang, M. Kamionkowski, Cosmological signature of new parity violating interactions. Phys. Rev. Lett. 83, 1506–1509 (1999). https://doi.org/10.1103/PhysRevLett. 83.1506

  48. M. Novello, H.J. Mosquera Cuesta, V.A. DeLorenci, Birefringence of gravitational waves, in Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. Proceedings, 9th Marcel Grossmann Meeting, MG’9, Rome, Italy, July 2–8, 2000. Pts. A–C (2000), pp. 1092–1095

    Google Scholar 

  49. S. Alexander, J. Martin, Birefringent gravitational waves and the consistency check of inflation. Phys. Rev. D 71, 063526 (2005). https://doi.org/10.1103/PhysRevD.71.063526

  50. H.S.S. Alexander, Inflationary birefringence and baryogenesis. Int. J. Mod. Phys. D25(11), 1640013 (2016). https://doi.org/10.1142/S0218271816400137

  51. R. Jackiw, S.Y. Pi, Chern-Simons modification of general relativity. Phys. Rev. D 68, 104012 (2003). https://doi.org/10.1103/PhysRevD.68.104012

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Alexander, N. Yunes, Chern-Simons modified general relativity. Phys. Rept. 480, 1–55 (2009). https://doi.org/10.1016/j.physrep.2009.07.002

  53. P.A. Seoane et al., The gravitational universe (2013), arXiv:1305.5720

  54. C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. JCAP 1604(04), 001 (2016). https://doi.org/10.1088/1475-7516/2016/04/001

  55. K. Ichiki, M. Yamaguchi, J.I. Yokoyama, Lepton asymmetry in the primordial gravitational wave spectrum. Phys. Rev. D 75, 084017 (2007). https://doi.org/10.1103/PhysRevD.75.084017

  56. P. Singh, B. Mukhopadhyay, Gravitationally induced neutrino asymmetry. Mod. Phys. Lett. A 18, 779–785 (2003). https://doi.org/10.1142/S0217732303009691

  57. A. Denner, H. Eck, O. Hahn, J. Kublbeck, Feynman rules for fermion number violating interactions. Nucl. Phys. B387, 467–481 (1992). https://doi.org/10.1016/0550-3213(92)90169-C

  58. D. Burns, A. Pilaftsis, Matter quantum corrections to the graviton self-energy and the Newtonian potential. Phys. Rev. D 91(6), 064047 (2015). https://doi.org/10.1103/PhysRevD.91.064047

  59. D. Anselmi, A Note on the dimensional regularization of the standard model coupled with quantum gravity. Phys. Lett. B 596, 90–95 (2004). https://doi.org/10.1016/j.physletb.2004.06.089

  60. M. Gomes, T. Mariz, J.R. Nascimento, E. Passos, AYu. Petrov, A.J. da Silva, On the ambiguities in the effective action in Lorentz-violating gravity. Phys. Rev. D 78, 025029 (2008). https://doi.org/10.1103/PhysRevD.78.025029

    Article  ADS  Google Scholar 

  61. A.N. Redlich, L.C.R. Wijewardhana, Induced Chern-Simons terms at high temperatures and finite densities. Phys. Rev. Lett. 54, 970 (1985). https://doi.org/10.1103/PhysRevLett. 54.970

    Article  ADS  MathSciNet  Google Scholar 

  62. J.G. McCarthy, A. Wilkins, Induced Chern-Simons terms. Phys. Rev. D 58, 085007 (1998). https://doi.org/10.1103/PhysRevD.58.085007

  63. M. Joyce, M. Shaposhnikov, Primordial magnetic fields, right-handed electrons, and the Abelian anomaly. Phys. Rev. Lett. 79, 1193–1196 (1997). https://doi.org/10.1103/PhysRevLett. 79.1193

  64. R. Jackiw, V.A. Kostelecky, Radiatively induced Lorentz and CPT violation in electrodynamics. Phys. Rev. Lett. 82, 3572–3575 (1999). https://doi.org/10.1103/PhysRevLett. 82.3572

  65. T. Mariz, J.R. Nascimento, E. Passos, R.F. Ribeiro, Chern-Simons-like action induced radiatively in general relativity. Phys. Rev. D 70, 024014 (2004). https://doi.org/10.1103/PhysRevD.70.024014

    Article  ADS  MathSciNet  Google Scholar 

  66. M. Dvornikov, V.B. Semikoz, Instability of magnetic fields in electroweak plasma driven by neutrino asymmetries. JCAP 1405, 002 (2014). https://doi.org/10.1088/1475-7516/2014/05/002

  67. Y. Akamatsu, N. Yamamoto, Chiral plasma instabilities. Phys. Rev. Lett. 111, 052002 (2013). https://doi.org/10.1103/PhysRevLett. 111.052002

  68. J.C.C. Felipe, A.R. Vieira, A.L. Cherchiglia, A.P. Baêta, A.B. Scarpelli, M. Sampaio, Arbitrariness in the gravitational Chern-Simons-like term induced radiatively. Phys. Rev. D 89(10), 105034 (2014). https://doi.org/10.1103/PhysRevD.89.105034

  69. M.M. Anber, E. Sabancilar, Chiral gravitational waves from chiral fermions. Phys. Rev. D 96(2), 023501 (2017). https://doi.org/10.1103/PhysRevD.96.023501

  70. M.B. Green, J.H. Schwarz, Anomaly cancellation in supersymmetric D \(=\) 10 gauge theory and superstring theory. Phys. Lett. B 149, 117–122 (1984). https://doi.org/10.1016/0370-2693(84)91565-X

  71. T.L. Smith, A.L. Erickcek, R.R. Caldwell, M. Kamionkowski, The effects of Chern-Simons gravity on bodies orbiting the earth. Phys. Rev. D 77, 024015 (2008). https://doi.org/10.1103/PhysRevD.77.024015

  72. N. Yunes, D.N. Spergel, Double binary pulsar test of dynamical Chern-Simons modified gravity. Phys. Rev. D 80, 042004 (2009). https://doi.org/10.1103/PhysRevD.80.042004

  73. Y. Ali-Haimoud, Revisiting the double-binary-pulsar probe of non-dynamical Chern-Simons gravity. Phys. Rev. D 83, 124050 (2011). https://doi.org/10.1103/PhysRevD.83.124050

  74. S. Dyda, E.E. Flanagan, M. Kamionkowski, Vacuum instability in Chern-Simons gravity. Phys. Rev. D 86, 124031 (2012). https://doi.org/10.1103/PhysRevD.86.124031

  75. S. Alexander, L.S. Finn, N. Yunes, A gravitational-wave probe of effective quantum gravity. Phys. Rev. D 78, 066005 (2008). https://doi.org/10.1103/PhysRevD.78.066005

  76. S.M. Carroll, M. Hoffman, M. Trodden, Can the dark energy equation-of-state parameter w be less than \(-1\)? Phys. Rev. D 68, 023509 (2003). https://doi.org/10.1103/PhysRevD.68.023509

  77. J.M. Cline, S. Jeon, G.D. Moore, The phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004). https://doi.org/10.1103/PhysRevD.70.043543

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil David Barrie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrie, N.D. (2018). Gravitational Waves and the Cosmic Neutrino Background. In: Cosmological Implications of Quantum Anomalies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94715-0_5

Download citation

Publish with us

Policies and ethics