Skip to main content

Fine-Grained Parameterized Complexity Analysis of Knot-Free Vertex Deletion – A Deadlock Resolution Graph Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1384 Accesses

Abstract

A knot in a directed graph G is a strongly connected subgraph Q of G with size at least two, such that no vertex in V(Q) is an in-neighbor of a vertex in \(V(G)\setminus V(Q)\). Knots are a very important graph structure in the networked computation field, because they characterize deadlock occurrences into a classical distributed computation model, the so-called OR-model. Given a directed graph G and a positive integer k, in this paper we present a parameterized complexity analysis of the Knot-Free Vertex Deletion (KFVD) problem, which consists of determining whether G has a subset \(S \subseteq V(G)\) of size at most k such that \(G[V\setminus S]\) contains no knot. KFVD is a graph problem with natural applications in deadlock resolution, and it is closely related to Directed Feedback Vertex Set. It is known that KFVD is NP-complete on planar graphs with bounded degree, but it is polynomial time solvable on subcubic graphs. In this paper we prove that: KFVD is W[1]-hard when parameterized by the size of the solution; it can be solved in \(2^{k\log \varphi }n^{O(1)}\) time, but assuming SETH it cannot be solved in \((2-\epsilon )^{k\log \varphi }n^{O(1)}\) time, where \(\varphi \) is the size of the largest strongly connected subgraph of G; it can be solved in \(2^{\phi }n^{O(1)}\) time, but assuming ETH it cannot be solved in \(2^{o(\phi )}n^{O(1)}\) time, where \(\phi \) is the number of vertices with out-degree at most k; unless \(PH = \varSigma _p^3\), KFVD does not admit polynomial kernel even when \(\varphi =2\) and k is the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbosa, V.C.: The combinatorics of resource sharing. In: Corrêa, R., Dutra, I., Fiallos, M., Gomes, F. (eds.) Models for Parallel and Distributed Computation. APOP, vol. 67, pp. 27–52. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-3609-0_2

    Chapter  Google Scholar 

  2. Barbosa, V.C., Benevides, M.R.: A graph-theoretic characterization of AND-OR deadlocks. Technical report COPPE-ES-472/98, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (1998)

    Google Scholar 

  3. Barbosa, V.C., Carneiro, A.D.A., Protti, F., Souza, U.S.: Deadlock models in distributed computation: foundations, design, and computational complexity. In: Proceedings of the 31st ACM/SIGAPP Symposium on Applied Computing, pp. 538–541 (2016)

    Google Scholar 

  4. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Macmilan, London (1976)

    Book  Google Scholar 

  5. Carneiro, A.D.A., Protti, F., Souza, U.S.: Deletion graph problems based on deadlock resolution. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 75–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_7

    Chapter  Google Scholar 

  6. Chahar, P., Dalal, S.: Deadlock resolution techniques: an overview. Int. J. Sci. Res. Publ. 3(7), 1–5 (2013)

    Google Scholar 

  7. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3, 63–75 (1985)

    Article  Google Scholar 

  8. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM (JACM) 55(5), 21 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Meng, J.: On parameterized intractability: hardness and completeness. Comput. J. 51(1), 39–59 (2007)

    Article  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  12. de Mendívil, J.G., Fariña, F., Garitagotia, J.R., Alastruey, C.F., Bernabeu-Auban, J.M.: A distributed deadlock resolution algorithm for the and model. IEEE Trans. Parallel Distrib. Syst. 10(5), 433–447 (1999)

    Article  Google Scholar 

  13. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms (TALG) 11(2), 13 (2014)

    MathSciNet  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science, p. 87. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  16. Gary, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness (1979)

    Google Scholar 

  17. Holt, R.C.: Some deadlock properties of computer systems. ACM Comput. Surv. (CSUR) 4(3), 179–196 (1972)

    Article  MathSciNet  Google Scholar 

  18. Impagliazzo, R., Paturi, R.: Complexity of k-SAT. In: 1999 Proceedings of the Fourteenth Annual IEEE Conference on Computational Complexity, pp. 237–240. IEEE (1999)

    Google Scholar 

  19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? In: 1998 Proceedings 39th Annual Symposium on Foundations of Computer Science, pp. 653–662. IEEE (1998)

    Google Scholar 

  20. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  21. Leung, E.K., Lai, J.Y.-T.: On minimum cost recovery from system deadlock. IEEE Trans. Comput. 9(C–28), 671–677 (1979)

    Article  MathSciNet  Google Scholar 

  22. Lokshtanov, D., Marx, D., Saurabh, S., et al.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 3(105), 41–72 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Niedermeier, R.: Invitation to fixed-parameter algorithms (2006)

    Chapter  Google Scholar 

  24. Terekhov, I., Camp, T.: Time efficient deadlock resolution algorithms. Inf. Process. Lett. 69(3), 149–154 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uéverton S. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carneiro, A.D.A., Protti, F., Souza, U.S. (2018). Fine-Grained Parameterized Complexity Analysis of Knot-Free Vertex Deletion – A Deadlock Resolution Graph Problem. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics