Skip to main content

A Formal Semantics for Traffic Sequence Charts

  • Chapter
  • First Online:
Principles of Modeling

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10760))

Abstract

This paper paves the way for a future scenario catalog-based approach to acceptance testing for highly autonomous vehicles by providing a rigorous formal semantics for a visual specification language of traffic sequence charts to be used for building the scenario catalog. It builds on our previous work on Live Sequence Charts [2] that defines a semantics sufficiently rich to cover both the requirement analysis phase and the specification phase for highly autonomous vehicles. This formal semantics provides the basis for tool support, in particular supporting the future V&V environment for autonomously driving cars under development by the German automotive industry.

This research was partly funded by the German Federal Ministry of Education and Research (BMBF), under grant “CrESt” (01IS16043).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.pegasusprojekt.de.

  2. 2.

    www.enable-s3.eu.

  3. 3.

    More generally, a type t is a pair (\(\mathcal {U}\), Idx) where \(\mathcal {U}\) is a \(|\textit{Var} _{\sigma (o)}|\) dimensional subspace of WM’s state space. Idx specifies the dimensions of WM that belong to objects of t. Given a state \(\mathbf {X}\) of WM, \((x_{id_1}\ldots x_{id_n})^T\) gives the state of an object of t, where \((id_1,\ldots ,id_n)\in \textit{Idx}\).

  4. 4.

    HIOAs were introduced by Lynch et al. in [18]. The original definition additionally defines local, input, and output actions. These are omitted here since we do not yet specify communication. However, we plan to integrate LSCs to specify communications.

  5. 5.

    In abuse of notation denotes .

References

  1. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_4

    Chapter  Google Scholar 

  2. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal Methods Syst. Des. 19(1), 45–80 (2001). https://doi.org/10.1023/A:1011227529550

    Article  MATH  Google Scholar 

  3. Damm, W., Horbach, M., Sofronie-Stokkermans, V.: Decidability of verification of safety properties of spatial families of linear hybrid automata. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 186–202. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0_12

    Chapter  MATH  Google Scholar 

  4. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Traffic sequence charts - from visualization to semantics. Reports of SFB/TR 14 AVACS 117, SFB/TR 14 AVACS, October 2017

    Google Scholar 

  5. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Traffic sequence charts - a visual language for capturing traffic scenarios. In: Embedded Real Time Software and Systems - ERTS2018, February 2018

    Google Scholar 

  6. Damm, W., Peter, H., Rakow, J., Westphal, B.: Can we build it: formal synthesis of control strategies for cooperative driver assistance systems. Math. Struct. Comput. Sci. 23(4), 676–725 (2013). https://doi.org/10.1017/S0960129512000230

    Article  MathSciNet  MATH  Google Scholar 

  7. Damm, W., Westphal, B.: Live and let die: LSC based verification of UML models. Sci. Comput. Program. 55(1–3), 117–159 (2005). https://doi.org/10.1016/j.scico.2004.05.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Fränzle, M.: What will be eventually true of polynomial hybrid automata? In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 340–359. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45500-0_17

    Chapter  MATH  Google Scholar 

  9. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 152–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_11

    Chapter  Google Scholar 

  10. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 126–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0_10

    Chapter  Google Scholar 

  11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSC’s and the Play-Engine. Springer, New York (2003). https://doi.org/10.1007/978-3-642-19029-2

    Book  Google Scholar 

  12. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  14. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of autonomous urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_16

    Chapter  MATH  Google Scholar 

  15. ITU-T: ITU-T recommendation Z.120: Message Sequence Chart (MSC) (2011). https://www.itu.int/rec/T-REC-Z.120-201102-I

  16. Kemper, S., Etzien, C.: A visual logic for the description of highway traffic scenarios. In: Aiguier, M., Boulanger, F., Krob, D., Marchal, C. (eds.) Complex Systems Design and Management, pp. 233–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02812-5_17

    Chapter  Google Scholar 

  17. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. Log. Methods Comput. Sci. 11(3) (2015). http://lmcs.episciences.org/1580

  18. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. Comput. 185(1), 105–157 (2003). http://www.sciencedirect.com/science/article/pii/S0890540103000671

    Article  MathSciNet  Google Scholar 

  19. Ody, H.: Undecidability results for multi-lane spatial logic. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 404–421. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_24

    Chapter  Google Scholar 

  20. VIRES Simulationstechnologie GmbH: OpenDRIVE (2015). http://www.opendrive.org. Accessed 07 Sept 2017

  21. VIRES Simulationstechnologie GmbH: OpenCRG (2016). http://www.opencrg.org. Accessed 07 Sept 2017

  22. VIRES Simulationstechnologie GmbH: OpenSCENARIO (2017). http://www.openscenario.org. Accessed 07 Sept 2017

  23. Zhang, P., Grunske, L., Tang, A., Li, B.: A formal syntax for probabilistic timed property sequence charts. In: 2009 IEEE/ACM International Conference on Automated Software Engineering, pp. 500–504, November 2009

    Google Scholar 

  24. Zhang, P., Li, W., Wan, D., Grunske, L.: Monitoring of probabilistic timed property sequence charts. Softw.: Pract. Exp. 41(7), 841–866 (2011). https://doi.org/10.1002/spe.1038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Rakow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damm, W., Möhlmann, E., Peikenkamp, T., Rakow, A. (2018). A Formal Semantics for Traffic Sequence Charts. In: Lohstroh, M., Derler, P., Sirjani, M. (eds) Principles of Modeling. Lecture Notes in Computer Science(), vol 10760. Springer, Cham. https://doi.org/10.1007/978-3-319-95246-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95246-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95245-1

  • Online ISBN: 978-3-319-95246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics