Skip to main content

Perception of Absolute Distances Within Different Visualization Systems: HMD and CAVE

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

Many studies on distance perception in a virtual environment exist. Most of them were conducted using head-mounted displays (HMD) and less with large screen displays such as CAVE systems. In this paper, we propose to measure the accuracy of perceived distances in a virtual space ranging from 0 to 15 m in a CAVE system compared to an HMD. Eight subjects with different vision performances took part in an experiment. Results show that the HMD provides the best results for distances above 8 m while the CAVE provides the best results for close distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruder, G., Argelaguet, F., Olivier, A.H., Lcuyer, A.: CAVE size matters: effects of screen distance and parallax on distance estimation in large immersive display setups. Presence Teleoperators Virtual Environ. 25(1), 1–16 (2016). https://doi.org/10.1162/PRES_a_00241

    Article  Google Scholar 

  2. Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. In: Perception of Space and Motion, pp. 69–117 (1995). https://doi.org/10.1016/B978-012240530-3/50005-5

    Chapter  Google Scholar 

  3. Dorado, J.L., Figueroa, P., Chardonnet, J.R., Merienne, F., Hernandez, T.: Comparing VR environments for seat selection in an opera theater. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 221–222 (2017). https://doi.org/10.1109/3DUI.2017.7893351

  4. Fukusima, S.S., Loomis, J.M., Da Silva, J.A.: Visual perception of egocentric distance as assessed by triangulation. J. Exp. Psychol. Hum. Percept. Perform. 23(1), 86–100 (1997). https://doi.org/10.1037/0096-1523.23.1.86

    Article  Google Scholar 

  5. Gardner, P., Mon-Williams, M.: Vertical gaze angle: absolute height-in-scene information for the programming of prehension. Exp. Brain Res. 136(3), 379–385 (2001). https://doi.org/10.1007/s002210000590

    Article  Google Scholar 

  6. Grechkin, T.Y., Nguyen, T.D., Plumert, J.M., Cremer, J.F., Kearney, J.K.: How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans. Appl. Percept. 7(4), 26:1–26:18 (2010). https://doi.org/10.1145/1823738.1823744

    Article  Google Scholar 

  7. Howard, J.P., Rogers, B.J.: Stereoacuity. In: Seeing in Depth. University of Toronto Press (2002)

    Google Scholar 

  8. Huckauf, A.: Virtual and real visual depth. In: APGV 2005 Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, p. 172 (2005). https://doi.org/10.1145/1080402.1080456

  9. Iachini, T., Logie, R.: The role of perspective in locating position in a real world, unfamiliar environment. Appl. Cogn. Psychol. 17, 715–732 (2003). https://doi.org/10.1002/acp.904

    Article  Google Scholar 

  10. Interrante, V., Anderson, L., Ries, B.: Distance perception in immersive virtual environments, revisited. In: Proceedings of the IEEE Conference on Virtual Reality, pp. 3–10 (2006). https://doi.org/10.1109/VR.2006.52

  11. Kelly, J.W., Cherep, L.A., Siegel, Z.D.: Perceived space in the HTC Vive. ACM Trans. Appl. Percept. 15(1), 1–16 (2017). https://doi.org/10.1145/3106155

    Article  Google Scholar 

  12. Knapp, J.M., Loomis, J.M.: Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence Teleoperators Virtual Environ. 13, 572–577 (2004). https://doi.org/10.1162/1054746042545238

    Article  Google Scholar 

  13. Kuhl, S., Thompson, T., Creem-Regehr, S.: HMD calibration and its effects on distance judgments. ACM Trans. Appl. Percept. 6(3) (2009). https://doi.org/10.1145/1577755.1577762

    Article  Google Scholar 

  14. Loomis, J.M., Knapp, J.M.: Visual perception of egocentric distance in real and virtual environments. In: Virtual and Adaptive Environments, pp. 21–46 (2003)

    Google Scholar 

  15. Marsh, W.E., Chardonnet, J.-R., Merienne, F.: Virtual distance estimation in a CAVE. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds.) Spatial Cognition 2014. LNCS (LNAI), vol. 8684, pp. 354–369. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11215-2_25

    Chapter  Google Scholar 

  16. Meng, J., Rieser, J., Bodenheimer, B.: Distance estimation in virtual environments using bisection. In: APGV 2006 Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, p. 146 (2006). https://doi.org/10.1145/1140491.1140523

  17. Messing, R., Durgin, F.: Distance perception and the visual horizon in head mounted displays. ACM Trans. Appl. Percept. 2(3), 234–250 (2005). https://doi.org/10.1145/1077399.1077403

    Article  Google Scholar 

  18. Mohler, B., Bülthoff, H., Thompson, W., Creem-Regehr, S.: A full-body avatar improves egocentric distance judgments in an immersive virtual environment. In: APGV 2008 Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, p. 194 (2008). https://doi.org/10.1145/1394281.1394323

  19. Ooi, T.L., Wu, B., He, Z.J.: Distance determined by the angular declination below the horizon. Nature 414, 197–200 (2001). https://doi.org/10.1038/35102562

    Article  Google Scholar 

  20. Piryankova, I.V., de la Rosa, S., Kloos, U., Bülthoff, H.H., Mohler, B.J.: Egocentric distance perception in large screen immersive displays. Displays 34(2), 153–164 (2013). https://doi.org/10.1016/j.displa.2013.01.001

    Article  Google Scholar 

  21. Plumert, J., Kearney, J., Cremer, J.: Distance perception in real and virtual environments. In: APGV 2004 Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 27–34 (2004). https://doi.org/10.1145/1012551.1012557

  22. Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46(2), 23:1–23:40 (2013). https://doi.org/10.1145/2543581.2543590

    Article  Google Scholar 

  23. Ries, B., Interrante, V., Anderson, L., Lindquist, J.: Presence, rather than prior exposure, is the more strongly indicated factor in the accurate perception of egocentric distances in real world co-located immersive virtual environments. In: APGV 2006 Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, p. 157 (2006). https://doi.org/10.1145/1140491.1140534

  24. Thompson, W.B., Willemsen, P., Gooch, A.A., Creem-Regehr, S.H., Loomis, J.M., Beall, A.C.: Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence Teleoperators Virtual Environ. 13(5), 560–571 (2004). https://doi.org/10.1162/1054746042545292

    Article  Google Scholar 

  25. Willemsen, P., Colton, P., Creem-Regehr, S., Thompson, W.: The effects of head mounted display mechanics on distance judgments in virtual environments. In: APGV 2004 Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, pp. 35–38 (2004). https://doi.org/10.1145/1012551.1012558

  26. Willemsen, P., Gooch, A.: Perceived egocentric distances in real, image-based, and traditional virtual environments. In: Proceedings of the IEEE Virtual Reality Conference 2002, p. 275 (2002). https://doi.org/10.1109/VR.2002.996536

  27. Witmer, B.G., Kline, P.B.: Judging perceived and traversed distance in virtual environments. Presence Teleoperators Virtual Environ. 7(2), 144–167 (1998). https://doi.org/10.1162/105474698565640

    Article  Google Scholar 

  28. Witmer, B.G., Sadowski, W.: Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Hum. Factors 40(3), 478–488 (1998). https://doi.org/10.1518/001872098779591340

    Article  Google Scholar 

  29. Wu, B., Ooi, T., He, Z.: Perceiving distance accurately by a directional process of integrating ground information. Nature 428, 73–77 (2004). https://doi.org/10.1038/nature02350

    Article  Google Scholar 

  30. Yang, U., Kim, N.G., Kim, K.H.: Perception adjustment for egocentric moving distance between real space and virtual space with see-closed-type HMD. In: SIGGRAPH Asia 2017, pp. 23:1–23:2 (2017). https://doi.org/10.1145/3145690.3145721

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalache Ghinea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghinea, M., Frunză, D., Chardonnet, JR., Merienne, F., Kemeny, A. (2018). Perception of Absolute Distances Within Different Visualization Systems: HMD and CAVE. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics